Мегаобучалка Главная | О нас | Обратная связь


Анилин – представитель ароматических аминов, его практическое применение



2020-03-17 275 Обсуждений (0)
Анилин – представитель ароматических аминов, его практическое применение 0.00 из 5.00 0 оценок




Задачи урока: на примере анилиза закрепить знания учащихся о химических свойствах аминов; дать представление об ароматических аминах; показать практическую значимость анилина как важнейшего продукта химической промышленности [5].

Оборудование: на демонстрационном столе – анилин, вода, фенолфталеин, соляная кислота, раствор щелочи, пробирки.

Анилин изучается с целью конкретизации общего понятия об аминах и как важнейший представитель этого класса соединений.

В связи с этим урок можно провести в форме рассказа с максимальным привлечением учащихся для обсуждения заданий и вопросов:

1. Назовите гомологические ряды углеводородов и укажите особенности их строения.

2. Какие вещества относятся к аминам?

3. Какова формула ароматического амина?

4. Как доказать, что анилин проявляет основные свойства? Составьте уравнение химической реакции.

Далее внимание учащихся привлекают к реакции взаимодействия анилина с бромом, не останавливаясь на влиянии аминогруппы на бензольное кольцо, а лишь указывая, что особенности строения молекулы анилина обусловливают возможность осуществления этой реакции.

О получении и применении анилина для изготовления красителей, различных фармацевтических препаратов, фотореагентов, взрывчатых веществ, пластических масс и т.д. рассказывает учитель.

На этом уроке, по нашему мнению, целесообразно отметить в рассказе о производстве и применении анилина и токсическое воздействие выбросов как производства, так и побочных продуктов при использовании аминосоединений.

2.2.3 Развернутый план-конспект урока

При изучении данной темы надо закрепить основную идею о развитии органических веществ и причинах, порождающих их многообразие; углубить понятие о ковалентной связи на примерах аминов; расширить знания о водородных связях и амфотерных соединениях [6].

Азотсодержащие органические вещества изучаются методом сравнения, с привлечением ранее изученного материала, что дает возможность для широкого его обобщения.

Приступая к рассмотрению темы, предлагают учащимся вспомнить, какие соединения, содержащие азот, им известны. Учащиеся называют нитробензол, нитроглицерин, тринитроклетчатку. Коротко повторяют сведения о свойствах нитробензола и его получении в лаборатории. При этом составляют на доске уравнение реакции, отмечают ее тип (замещения) и дают название (реакция нитрования). На вопрос, могут ли быть проведены реакции нитрования предельных углеводородов, учащиеся дают утвердительный ответ. После этого записывают уравнения реакций нитрования до пятого гомолога. Учитель отмечает, что впервые эти реакции были проведены русским ученым М.И. Коноваловым в 1886 г. По аналогии с нитробензолом дает названия вновь полученным азотсодержащим веществам – нитрометан, нитроэтан и т.д. Далее коротко учитель знакомит учащихся с физическими свойствами полученных гомологов. Из химических свойств нитросоединений следует подчеркнуть их способность восстанавливаться водородом. Для того, чтобы учащиеся убедились в образовании гомологического ряда новых азотсодержащих веществ и самостоятельно их назвали, составляют уравнения реакций:

СН32 + 3Н2 ® 2Н2О + СН32

С2Н5NO2 + 3Н2 ® 2Н2О + С2Н52

С3Н7NO2 + 3Н2 ® 2Н2О + С3Н72 и т.д.

Обращают внимание на образование новой функциональной группы атомов, – NН2 – аминогруппы. Здесь надо отметить, что аминами их называют по тем радикалам, которые входят в состав молекулы, с прибавлением слова «амин». После этого учащиеся без труда дают названия полученным веществам: метиламин, этиламин и др. Сопоставляя записанные ранее уравнения реакций нитрования с реакциями восстановления, делают вывод о генетической связи между гомологическими рядами органических веществ: углеводороды можно превратить в нитросоединения, а нитросоединения – в амины:

СН4 + НNО3 ® Н2О + СН32;

СН32 + 3Н2 ® 2Н2О + СН3NH2.

Эти соединения являются аминами жирного ряда, так как они получены от предельных углеводородов. Затем описывают физические свойства первых представителей ряда аминов. Прежде чем перейти к изучению их химических свойств, обращают внимание на состав функциональной группы. Аминогруппа – остаток от аммиака, в котором один атом водорода замещен на углеводородный радикал. Далее предлагают рассмотреть амины как производные аммиака. Учащиеся отмечают, что в аммиаке могут быть заменены на углеводородные радикалы и два других атома водорода. Тогда в зависимости от числа остатков углеводородов, входящих в молекулу, амины могут быть

СН3NH2, С2Н5NH2

 

первичные

 

вторичные

третичные

В природе амины встречаются при разложении белковых соединений; например, в селедочном рассоле содержится метиламин, диметиламин, три-метиламин. Все амины являются производными от аммиака, поэтому они должны обладать и сходством с ним. Этот вопрос учащиеся могут решать самостоятельно (к этому уроку они должны повторить свойства аммиака). Например, один из учащихся записывает в левой части доски уравнения реакций, характеризующих химические свойства аммиака (взаимодействие с водой, с кислотами, горение в токе кислорода). Здесь же демонстрируют эти опыты, особо подчеркивая способность аммиака гореть только в токе кислорода.

Затем проводят подобные опыты с аминами (см. пп. 1.1.3.1.). На основании опытов делают выводы о свойствах аминов.

В отличие от аммиака амины горят на воздухе. Делают вывод: амины по химическим, свойствам сходны с аммиаком, но в отличие от него горят на воздухе. Это свойство привело ученого Вюрца к открытию аминов в 1848 г. Во время объяснений в правой части доски параллельно со свойствами аммиака записывают уравнения реакций с аминами. В результате сопоставления свойств аммиака и аминов учащиеся убеждаются, что среди органических веществ существуют вещества со свойствами оснований органические основания. Объясняют это, исходя из электронного строения, рассматривая на примере образования иона аммония. Напоминают, что у атома азота из пяти валентных электронов три неспаренных идут на образование ковалентных связей с атомами водорода, образуя молекулу аммиака, а два спаренных электрона остаются необобщенными, свободными. За счет их у атома азота устанавливается ковалентная связь с ионом (протоном) водорода воды или кислоты. При этом в первом случае освобождаются ионы гидроксила, которые определяют свойства оснований, во втором – ионы кислотного остатка. Рассматривают электронное строение аминов:

 

..

 

Особое внимание обращают на неподеленную электронную пару азота, которая, так же как и в аммиаке, идет на образование ковалентной связи с протоном водорода. При этом образуется органическое соединение со свойствами оснований (1) или соли (2), если протон (ион) водорода был от кислоты:

 

 

Формула соли может быть записана и по-иному:

СН3. NH2. НС1

Хлористоводородный метиламин

Учащимся известно, что свойства веществ определяются их строением. Сравнивая электронное строение гидрооксида аммония и метиламмония. они могут установить, какие вещества – амины или аммиак – являются более сильными основаниями.

Целесообразно напомнить, что метальный радикал способен оттеснять от себя электронную плотность. Тогда на азоте возникает повышенная электронная плотность и он прочнее будет удерживать протон водорода в молекуле. Ион гидроксила освобождается, концентрация его в растворе увеличивается, поэтому амины жирного ряда и являются более сильными основаниями, чем аммиак. Для закрепления материала учитель предлагает вопрос: усиление или ослабление основных свойств ожидается у диметиламина и триметиламина? Учащиеся знают, что радикал способен оттеснять от себя электронную плотность, поэтому они самостоятельно делают вывод, что двух- и трехзамещенные амины по сравнению с однозамещенными должны быть более сильными основаниями. Два радикала в большей степени увеличат электронную плотность на азоте, и, следовательно, азот сильнее будет удерживать ион водорода, а гидроксильные ионы станут поступать в раствор, т.е. сила основных свойств аминов зависит от величины отрицательного заряда на атоме азота: чем он больше, тем больше сила оснований. Казалось бы, третичный амин должен быть самым сильным основанием, но эксперимент показывает обратное. Видимо, три метальных радикала экранируют неподеленную пару электронов азота, мешают свободному присоединению ионов водорода, а, следовательно, в раствор мало поступает ионов гидроксила, поэтому среда слабоосновная.

Для того чтобы учащиеся лучше усвоили генетическую связь между классами органических веществ, разбирают образование ароматических аминов от «родоначальника» всех ароматических углеводородов – бензола через нитросоединения. Прежде всего, коротко напоминают способы получения аминов жирного ряда от предельных углеводородов, затем предлагают вспомнить свойства изученного ранее бензола и объяснить их, исходя из электронного строения бензола. Для этого желательно вывесить таблицу электронного строения бензола, подготовить модель его молекулы. Таким образом, учащиеся сами «протянут ниточку» от бензола к фениламину через нитробензол и без труда запишут соответствующие уравнения реакций.

Здесь же демонстрируют опыт получения нитробензола в колбе с обратным холодильником. На доске записывают уравнение соответствующей реакции. Затем проводят опыт восстановления полученного нитробензола в анилин. Во время выполнения этого опыта сообщают учащимся о реакции Н.Н. Зинина и ее значении для народного хозяйства.

Затем демонстрируют чистый анилин (если он есть в школе), рассказывая о его токсичности и об осторожном обращении с ним. Демонстрируют некоторые физические свойства: агрегатное состояние, цвет, запах, растворимость в воде.

Затем переходят к изучению химических свойств анилина. По аналогии с аминами жирного ряда предполагают наличие у анилина основных свойств. Для этого в стакан, в котором проверяли растворимость анилина в воде, приливают несколько капель фенолфталеина. Окраска раствора не меняется. Проверяют взаимодействие анилина с концентрированными соляной и серной кислотами. После охлаждения смеси учащиеся наблюдают кристаллизацию солей, следовательно, анилин проявляет свойства оснований, не слабее, чем амины жирного ряда. В ходе обсуждения этих опытов составляют уравнения реакций, дают названия образующимся веществам.

Далее демонстрируют взаимодействие солей анилина со щелочью (проводим аналогию с солями аммония). Здесь попутно ставят вопрос: в виде каких соединений амины жирного ряда находятся в селедочном рассоле, если он взаимодействует со щелочью с образованием аминов? (Как правило, учащиеся отвечают: в виде солей). Проверяют растворимость их в воде и взаимодействие солей анилина с окислителями, например с двухромовокислым калием. Этой реакцией обнаруживают вещества, разнообразные по окраске. Сообщают учащимся, что на свойствах анилина основано производство мно-гочисленных анилиновых красителей (в том числе и такого ценного, как синтетическое индиго), лекарственных веществ, пластических масс. В заключение демонстрируют опыт взаимодействия анилина с хлорной известью. Отмечают, что эта реакция является характерной на анилин. Для проверки предлагают обнаружить анилин в смеси веществ, полученных при постановке опыта восстановления нитробензола металлами. Учащиеся еще раз убеждаются в существовании генетической связи между классами. Для закрепления изученного предлагают составить уравнения реакций, подтверждающие возможность осуществления следующих превращений:

 

 

Учащиеся на опыте увидят, что основные свойства анилина по сравнению с аминами предельного ряда ослаблены. Объясняется это влиянием ароматического радикала фенила С6Н5. Для пояснения вновь расссматривваем электронное строение бензола. Учащиеся вспоминают, что подвижное p-электронное облако бензольного ядра образовано шестью электронами (хорошо иметь модель молекулы или хороший рисунок молекулы бензола). Необходимо подчеркнуть, что в бензольном ядре вместо одного атома водорода стоит аминогруппа, нарисовать электронное строение молекулы амина и еще раз обратить внимание на свободную неподеленную пару электронов атома азота в аминогруппе, которая вступает во взаимодействие с p-электронами бензольного кольца. Вследствие этого на азоте электронная плотность уменьшается, свободная пара электронов с меньшей силой удерживает протон водорода и в раствор поступает мало гидроксильных ионов. Все это определяет более слабые основные свойства анилина, что наблюдалось при реакции его с индикаторами.

Неподеленная пара электронов азота аминогруппы, вступая во взаимодействие с p-электронами бензольного ядра, смещает электронную плотность в орто- и пара-положения, делая ядро бензола в этих местах химически более активным. Это легко подтверждается опытом взаимодействия анилина с бромной водой, который тут же показывают:

 

 

В заключение следует обратить внимание учащихся на существующую в природе связь между веществами, на их развитие от простого к сложному.



2020-03-17 275 Обсуждений (0)
Анилин – представитель ароматических аминов, его практическое применение 0.00 из 5.00 0 оценок









Обсуждение в статье: Анилин – представитель ароматических аминов, его практическое применение

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (275)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)