Мегаобучалка Главная | О нас | Обратная связь


Выбор схемы инвертора, описание принципа действия



2020-03-19 304 Обсуждений (0)
Выбор схемы инвертора, описание принципа действия 0.00 из 5.00 0 оценок




Пояснительная записка

к курсовому проекту

«Последовательный автономный резонансный инвертор с обратными диодами»

 

 

Группа:          Э-405

Студент:         Козенков Д. А.

Руководитель: Сёмочкина Н.Б.

 

г. Тольятти 1998 г.


Содержание

 

1. Выбор схемы инвертора, описание принципа действия.

2. Расчёт АИР для промежуточного режима.

3. Расчёт АИР для «холодного» и «горячего» режимов.

4. Расчёт режима стабилизации напряжения на нагрузке.

5. Расчёт режима стабилизации мощности.

6. Выбор элементов схемы.

7. Расчёт дросселя.

8. Расчёт согласующего трансформатора.

Заключение.

Список литературы.


Введение

 

Автономные инверторы - устройства, преобразующие постоянный ток в переменный с неизменной или регулируемой частотой и работающие на автономную (не связанную с сетью переменного тока) нагрузку. В качестве нагрузки автономного инвертора может выступать как единичный потребитель, так и разветвлённая сеть потребителей.

Основой автономного инвертора является вентильное переключающее устройство, которое может выполняться по однофазным и трёхфазным схемам (с нулевым выводом или мостовым), где ключами служат транзисторы и одно- или двухоперационные тиристоры. При использовании однооперационных тиристоров схему дополняют элементами, предназначенными для коммутации тиристоров. Одним из главных является конденсатор. Конденсаторы могут применяться для формирования кривой выходного напряжения инвертора и определять характер процессов, протекающих в схеме. В связи с этим схемы автономных инверторов подразделяют на автономные инверторы напряжения (АИН), автономные инверторы тока (АИТ) и автономные резонансные инверторы (АИР).

В АИР конденсатор можно включать последовательно с нагрузкой или параллельно ей. Характер протекающих процессов в главных цепях ключевой схемы обуславливается колебательным процессом перезаряда конденсатора в цепи с источником питания и индуктивностью, специально введённой или имеющейся в составе нагрузки, в связи с чем ток в цепи нагрузки приближается по форме к синусоиде. АИР обычно выполняют на однооперационных тиристорах. Помимо формирования кривой тока (напряжения) нагрузки конденсаторы здесь осуществляют операцию запирания тиристоров.

В автономных резонансных инверторах (АИР) выключение вентилей осуществляется из-за колебательного характера тока, обеспечиваемого последовательным LC‑контуром. Нагрузка в АИР включается либо последовательно с LC‑контуром, либо параллельно с ним, либо параллельно одному из реактивных элементов.

АИР применяют на частотах свыше 1-2 кГц в электротермических и ультразвуковых установках, а также в качестве источников питания для высокоскоростных электродвигателей. Скорость нарастания тока в таких инверторах относительно небольшая, что облегчает условия работы вентилей.

По своим свойствам АИР в зависимости от соотношения параметров и схемы могут быть близки либо к инверторам тока, либо к инверторам напряжения. В первом случае источник питания обладает высоким сопротивлением для переменной составляющей входного тока (источник тока), а во втором - малым сопротивлением (источник напряжения). АИР с питанием от источников тока называются инверторами с закрытым входом, а питающиеся от источников напряжения - с открытым входом.

Резонансным инверторам свойственен недостаток, заключающийся в том, что напряжения на элементах схемы могут в несколько раз превышать напряжение питания. Одним из способов ограничения напряжения на элементах АИР является включение обратных или встречных диодов, с помощью которых накопленная на этапе проводимости тиристоров в конденсаторе энергия возвращается в источник питания или другой накопитель энергии.


Выбор схемы инвертора, описание принципа действия

 

Рассмотрим для начала возможные варианты построения схем АИР без обратных диодов. В последовательном автономном резонансном инверторе (АИР) нагрузка включается последовательно с коммутирующим конденсатором. Параметры коммутирующего контура выбираются так, чтобы обеспечить колебательный характер анодного тока тиристоров. Питание схем АИР (Рис. 1-3) осуществляется от источника ЭДС, имеющего малое внутреннее сопротивление, поэтому параллельно входным зажимам должен быть подключен емкостной фильтр. Во всех схемах тиристоры с нечётными и чётными номерами отпираются поочерёдно.

Схема АИР, приведённая на рисунке 1, обеспечивает работу даже при незначительном превышении частоты управления над собственной частотой резонансного контура, чего не позволяют схемы, изображённые на Рис. 2 и Рис. 3. При значительном расхождении частот не обеспечивается нормальный процесс коммутации, и работа АИР становится невозможной. Эта схема так же обеспечивает защиту тиристоров от высокой скорости нарастания тока (di/dt) при коротком замыкании (КЗ) в нагрузке и при “опрокидывании” инвертора. Схема на Рис. 2 защищает тиристоры от высокой di/dt при КЗ в нагрузке и при “опрокидывании” инвертора, но не обеспечивает нормального процесса коммутации при превышении частоты управления над собственной частотой резонансного контура w0. Схема на Рис. 3 защищает тиристоры только от высокой di/dt при КЗ в нагрузке. Эта схема является простейшей и не требует изготовления металлоёмких дросселей для создания достаточных магнитных связей между его обмотками, что упрощает конструкцию и снижает общую массу готового преобразователя.

Особенности работы схем АИР позволяют свести их к одной эквивалентной схеме замещения (Рис. 4).

Выбор схемы АИР, построенной с использованием обратных диодов в цепях управляемых тиристоров (Рис. 5), обусловлен рядом достоинств подобного схемотехнического решения. Улучшение характеристик схемы особенно заметно в области высоких частот. Так как в схеме АИР без обратных диодов с увеличением частоты относительная продолжительность токовых пауз возрастает, они начинают занимать значительную часть периода, происходит снижение мощности, отдаваемой в нагрузку, и значительное искажение формы кривой тока нагрузки. Наличие обратных диодов позволяет это компенсировать, также устраняются перегрузки по напряжению на тиристорах, однако обратное напряжение, появляющееся на тиристоре в течение времени его выключения, равно только падению напряжения на диоде, включенном встречно - параллельно с ним, поэтому возникает необходимость использования тиристоров с достаточно малым временем восстановления запирающих свойств.

В АИР можно выделить два основных рабочих режима: прерывистого тока нагрузки и непрерывного тока нагрузки. Для режима прерывистого тока характерно соотношение частот w0>2w, где w0=2p/Т0 - собственная резонансная частота выходной цепи, w=2p/Т - выходная частота инвертора, Т - период выходной частоты инвертора. Режиму непрерывного тока соответствует соотношение собственной резонансной частоты и частоты следования управляющих импульсов, при котором w0<2w. Из-за близкой к синусоиде форме кривой тока нагрузки, а также лучшего использования тиристоров по току режим непрерывного тока нагрузки находит большее применение на практике.   Уяснить особенности процессов в инверторе позволит рассмотрение временных диаграмм в режиме непрерывного тока нагрузки (Рис. 6). В исходный момент конденсатор Ск имел полярность, указанную на Рис. 5 в скобках.


Автономный резонансный инвертор, позволяющий работать на повышенной частоте.

 

 


Рис. 1

 

Автономный резонансный инвертор с защитой от высокой di/dt при “опрокидывании” инвертора и КЗ в нагрузке.

 

 

 


Рис. 2

 

Автономный резонансный инвертор с защитой от высокой di/dt при коротком замыкании.


 

 

 


Рис. 3

 

Схема замещения АИР.

 

 

 

 


Рис. 4

 

Принципиальная схема последовательного АИР с обратными диодами

 

Рис. 5

Временные диаграммы работы инвертора в режиме непрерывного тока нагрузки.

 

Рис. 6

В момент времени t0 отпираются тиристоры VS1 и VS4, и конденсатор Ск перезаряжается на противоположную полярность (на Рис. 5 без скобок). В момент t1 анодный ток тиристоров VS1 и VS4 становится равным нулю, и тиристоры запираются. Так как в результате колебательного процесса перезаряда конденсатор Ск заряжается до напряжения, превышающего напряжение источника питания, то диоды VD1 и VD4 отпираются, и конденсатор Ск разряжается на источник питания, обеспечивая протекание тока нагрузки в другом направлении. В момент t2 отпираются тиристоры VS2 и VS3, и ток нагрузки коммутируется на эти тиристоры. Конденсатор Ск перезаряжается исходной полярностью. После запирания тиристоров VS2 и VS3 ток нагрузки протекает через диоды VD2 и VD3. Таким образом, когда ток протекает через тиристоры, источник питания отдаёт энергию нагрузке, а на интервалах проводимости диодов часть реактивной энергии возвращается в источник питания.

 




2020-03-19 304 Обсуждений (0)
Выбор схемы инвертора, описание принципа действия 0.00 из 5.00 0 оценок









Обсуждение в статье: Выбор схемы инвертора, описание принципа действия

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (304)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)