Понятие дифференцируемости функции в точке. Необходимое и достаточное условие дифференцируемости в точке
Понятие дифференцируемости функции
Пусть функция Определение. Функция
где Заметим, что поскольку
Теорема. Для того чтобы функция Доказательство необходимости. Пусть функция
Отсюда следует, что в точке Доказательство достаточности. Пусть функция
В силу определения предельного значения, разность
Данное представление приращения функции совпадает с представлением (1), если обозначить через Правила дифференцирования также были сформулированы в предыдущей лекции. Докажем теперь некоторые из них. 1. Пусть функция Рассмотрим функцию
По определению производной имеем
2. Пусть функции
Пусть
3. Пусть функции Обозначим
Так как функции
4. Пусть функции Правило дифференцирования частного доказывается аналогично предыдущим.
Таблица производных. Таблица производных простейших элементарных функций 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
Популярное: Почему стероиды повышают давление?: Основных причин три... Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2443)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |