Мегаобучалка Главная | О нас | Обратная связь


Факторы, определяющие гибкость макромолекул



2015-11-10 3574 Обсуждений (0)
Факторы, определяющие гибкость макромолекул 4.67 из 5.00 3 оценки




Размер макромолекулы зависит также от так называемого исключенного объема . Это объем полимера, из которого данная полимерная молекула исключает все другие молекулы, что является результатом действия сил отталкивания между ними.

Термодинамическая гибкость определяется разностью конечного и начального состояния энергии DU = U 1U 2 и зависит от химического строения макромолекулы, природы и размера заместителя. Наибольшей равновесной гибкостью характеризуются полидиметилсилоксан, затем идут виниловые полимеры, которые обладают большой равновесной гибкостью, не изменяющейся даже при введении такого заместителя, как фенил. Очень гибкоцепными являются простые и сложные алифатические полиэфиры, что обусловлено низким потенциалом торможения вращения вокруг связей С–С и С–О–С. В цепях полиамидов вращение сильно заторможено. Поэтому алифатические полиамиды могут обладать равновесной гибкостью только в том случае, если амидные группы разделены большим числом метиленовых групп (не менее четырех). Еще большей жесткостью обладают ароматические полиамиды. Наибольшей термодинамической жесткостью характеризуются биополимеры, имеющие конформацию спирали, стабилизированной развитой системой внутримолекулярных водородных связей.

Кинетическая гибкость цепи зависит от величины потенциального барьера, молекулярной массы, температуры, степени сшивания (для сетчатых полимеров). Кинетическая гибкость, т. е. скорость изменения конформаций может быть увеличена в результате воздействия на макромолекулу внешних сил.

Потенциальный барьер вращения (U0). Величина U0 определяется взаимодействием атомов и атомных группировок соседних звеньев и зависит от полярности заместителей. Поворот вокруг какой-либо одной связи в макромолекуле вызывает пространственное перемещение значительного числа близлежащих атомов. Эти перемещения в той или иной степени будут влиять на величину потенциального барьера.

У карбоцепных полимеров наименее полярными являются предельные углеводороды. У них внутри- и межмолекулярные взаимодействия невелики, а также малы значения U0 и ΔU, следовательно, полимеры обладают высокой кинетической и термодинамической гибкостью. Примеры: ПЭ, ПП, ПИБ.

При введении полярных групп возможны три случая по влиянию на гибкость:

Полярные группы близко расположены и между ними возможны сильные взаимодействия. Переход такими полимерами из одного пространственного положения в другое требует преодоления больших U0, поэтому цепи таких полимеров кинетически жесткие (ПАН, ПВХ, ПВС, ПС, ПММА).

Полярные группы расположены в цепи редко и взаимодействия между ними не проявляются. Значения U0 и ΔU невелики и полимеры имеют высокую кинетическую и термодинамическую гибкость. полихлоропрен –CH2–CCl=CH–CH2

Полярные группы расположены так, что электрические поля взаимно компенсируются. При этом суммарный дипольный момент макромолекулы равен нулю. Поэтому низки значения U0 и ΔU и полимеры имеют большую кинетическую и термодинамическую гибкость. ПТФЭ

У гетероцепных полимеров вращение возможно вокруг связей С–О, С–N, Si–O, C–C. Значения U0 для этих связей невелики и цепи обладают достаточной кинетической гибкостью. Примеры: простые и сложные полиэфиры, полиамиды, полиуретаны (если уретановые группы разделены большим числом метиленовых групп), силоксановые каучуки.

Однако гибкость гетероцепных полимеров может ограничиваться межмолекулярными взаимодействиями за счёт образования Н-связей (например, у целлюлозы, полиамидов). Целлюлоза является одним из жесткоцепных полимеров. Увеличение числа полярных и больших по размеру заместителей или уменьшение числа метиленовых групп между эфирными и уретановыми группами приводит к уменьшению кинетической гибкости.

Таким образом, наиболее гибкоцепные полимеры характеризуются малыми величинами термодинамических и кинетических сегментов, а у наиболее жесткоцепных оба эти параметра велики. В то же время, макромолекулы могут обладать значительной термодинамической и малой кинетической гибкостью, например макромолекулы с гибкой основной цепью и объемными или полярными заместителями. В этом случае клубок «заторможен» в одном из конформационных состояний. Такие полимеры, как полистирол, поливинилхлорид, полиметилметакрилат и др. обладают высокой термодинамической гибкостью и низкой кинетической гибкостью.

Молекулярная масса не оказывает существенного влияния на величину потенциального барьера вращения, так как он определяется только взаимодействием соседних звеньев. Поэтому все полимергомологи имеют одинаковый потенциальный барьер вращения. Увеличение молекулярной массы повышает степень свернутости макромолекулы. Поэтому длинные линейные макромолекулы обладают большей кинетической гибкостью по сравнению с короткими. По мере увеличения молекулярной массы возрастает число конформаций, которое может принимать макромолекула и, гибкость цепей увеличивается.

Пространственная сетка, образованная химическими связями между макромолекулами, всегда ограничивает их подвижность. Чем больше химических связей между макромолекулами, тем меньше гибкость цепей, т.е. с увеличением густоты пространственной сетки гибкость уменьшается. Примером является снижение гибкости цепей с увеличением числа сшивок в ряду резол<резитол<резит.

Температура. Изменение температуры практически не приводит к изменению потенциального барьера вращения. Но с повышением температуры возрастает кинетическая энергия макромолекулы, и появляется возможность преодоления потенциального барьера. Когда кинетическая энергия макромолекулы становится равной или превышает величину U0, звенья начинают вращаться. Скорость поворота звеньев и интенсивность их крутильных колебаний возрастают, кинетическая гибкость возрастает.

Гибкость цепи оказывает большое влияние на свойства полимеров и определяет области их использования. Например, кинетическая гибкость приводит к возникновению у полимеров такого уникального и технически важного свойства, как высокоэластичность, кроме того, она обусловливает способность макромолекул к ориентации, что имеет огромное значение при формировании волокон. Термодинамическая гибкость проявляется в процессах кристаллизации, плавления и растворения полимеров.

 

Размеры макромолекул

Каждая конформация макромолекулы имеет определенные размеры. Для любой конформации, которую принимает макромолекула, характеристикой ее длины L является расстояние между концами цепи r. Если макромолекула полностью развернута (конформация струны), без нарушения валентных углов, то длина такой молекулы называется контурной или гидродинамической. Она связана с длиной мономерного звена соотношением: L = N×b0. Для предельно свернутой макромолекулы , а любых промежуточных положений .

Для свободно сочлененной цепи расстояние между концами макромолекулярного клубка r может изменяться от 0 до L (длины полностью развернутой цепи), положение каждого звена не зависит от положения предыдущего, т.е. отсутствует корреляция в расположении звеньев.

Размер макромолекулы оценивают среднеквадратичным расстоянием между ее концами.

При допущении полной свободы вращения длина макромолекулы определяется из соотношения:

,

где – средний квадрат длины макромолекулы; n – степень полимеризации; l – длина повторяющегося звена; β – угол, дополняющий валентный до 180°.

Из этого уравнения видно, что длина макромолекулы, т.е. расстояние между ее концами, пропорциональна корню квадратному из степени полимеризации.

Формула является приближенной, поскольку свободное вращение практически никогда не осуществляется. В реальных макромолекулах положения звеньев в пространстве взаимосвязаны. Но несмотря на заторможенность вращения одного звена относительно другого, конформация может изменяться очень сильно как под действием тепловых флуктуаций, так и при действии механической силы. Более того, даже если потенциальный энергетический барьер настолько велик, что полностью преодолеть его невозможно, отдельных колебаний относительно положения равновесия (т.е. в минимуме потенциальной энергии) достаточно для того, чтобы макромолекула существенно изменила свою конформацию.

Длина макромолекулы, в которой вращение отдельных звеньев заторможено, существенно большедлины макромолекулы, в которой вращение отдельных звеньев совершенно свободно. Это следует из выражения:

,

где – средний косинус угла заторможенного вращения.

Отношение среднеквадратичных расстояний между концами реальной цепи и цепи со свободным вращением обозначается буквой s:

Очевидно, что чем больше заторможено внутреннее вращение, т.е. чем меньше угол вращения j, тем больше и s. Следовательно, параметр s («параметр жесткости») является количественной мерой равновесной (термодинамической) гибкости макромолекулярной цепи.

Наиболее универсальной мерой оценки термодинамической гибкости цепи является величина статистического сегмента (сегмента Куна).

Понятие сегмента макромолекулы (сегмента цепи) является фундаментальным в науке о полимерах. Под воздействием тепловой, механической и электрической энергии перемещаются именно сегменты макромолекул, а не только отдельные атомные группы. Невозможно и одновременное перемещение макромолекулы как единого целого из-за ее большой молекулярной массы.

Под сегментом понимают отрезок цепи, Макромолекула каждого полимера характеризуется определен­ной среднестатистической конформацией (которая определяется интенсивностью теплового движения, позволяющего преодоле­вать барьер вращения), а также гибкостью (которая, в свою очередь, характеризуется величиной статистического сегмента).

положение которого не зависит от положения соседних отрезков.

Добавить Тугов с.46

Чтобы раскрыть смысл понятия сегмента Куна, рассмотрим особенности молекулярных движений в полимерах. Несмотря на то, что в реальных макромолекулах не существует свободного вращения, и каждый атом цепи совершает по отношению к своему соседу лишь вращательные колебания, при достаточной удаленности этих атомов друг от друга возможен полный оборот одного из них относительно другого. Если поворот вокруг каждой валентности составит, например, 36°, то третий атом относительно первого повернется на 72°, четвертый – на 108° и т.д. У одиннадцатого атома этот угол составит 360°. Таким образом, в результате сложения вращательных колебаний атомов цепи достигается свободное вращение одиннадцатого атома относительно первого. Для упрощения расчетов нередко реальную макромолекулу, состоящую из атомов и звеньев с заторможенным движением, представляют состоящей из ряда сегментов (А), совершающих по отношению друг к другу свободное вращение.

Понятие «сегмент» является условным. Физических границ между сегментами в макромолекуле нет. Размеры сегментов не являются строго определенными, они изменяются в зависимости от расположения соседних молекул, флуктуации теплового движения и т.д. Поэтому длину сегмента следует рассматривать как некоторую среднюю величину (среднестатистический сегмент). При этом следует не забывать об условности понятия сегмента и о том, что на самом деле его не существует.

Каждый сегмент состоит из s повторяющихся звеньев, следовательно, число сегментов N связано со степенью полимеризации n соотношением:

N = n/s.

 

Длина максимально вытянутой цепи без нарушения валентных углов называется контурной или гидродинамической длиной цепи L. Она связана с длиной сегмента А соотношением:

L = NA

Число конформаций, которые может принять цепь, или термодинамическая вероятность существования цепи W, выражается формулой Гаусса:

,

где

Распределение макромолекул по значениям расстояний между концами цепи является гауссовым, поэтому клубок, образуемый макромолекулой, часто называют гауссовым клубком. Графически уравнение выражается кривой, представленной на рис. Из рисунка видно, что предельно вытянутое состояние (r=L) и предельно свернутое состояние (r=0) характеризуется небольшими значениями W, т.е. эти состояния маловероятны. Наиболее вероятным является расстояние r0, соответствующее максимальному значению W.

Среднеквадратичное расстояние между концами цепи связано с сегментом Куна уравнением:

,

где А – длина сегмента; L – длина полностью развернутой цепи (без нарушения валентных углов).

Физический смысл величины А заключается в том, что она представляет собой среднюю длину приблизительно прямолинейного сегмента цепи.

Гибкость макромолекулы связана с величиной сегмента: чем меньше величина сегмента, тем больше гибкость молекулы. Таким образом, более жесткая цепь характеризуется большей длиной сегмента. Например, более гибкая макромолекула полиэтилена характеризуется меньшей длиной сегмента, чем более жесткая молекула поливинилхлорида.



2015-11-10 3574 Обсуждений (0)
Факторы, определяющие гибкость макромолекул 4.67 из 5.00 3 оценки









Обсуждение в статье: Факторы, определяющие гибкость макромолекул

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (3574)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)