Мегаобучалка Главная | О нас | Обратная связь


Свойства выпуклых множеств



2015-11-20 3037 Обсуждений (0)
Свойства выпуклых множеств 4.75 из 5.00 4 оценки




Математическое программирование

Вопрос 8: Выпуклые множества. Выпуклая линейная комбинация точек.

 

Выпуклое множество - подмножество евклидова пространства содержащей отрезок, соединяющий любые какие две точки этой множества.

Определение

Другими словами, множество называется выпуклой, если:

То есть, если множество X вместе с любыми двумя точками, которые принадлежат этому множеству, содержит отрезок, их соединяющий:

.

В пространстве выпуклыми множествами будут прямая, полупрямой, отрезок, интервал, одноточечный множество.

В пространстве выпуклым будет само пространство, любое его линейный подпространство, шар, отрезок, одноточечный множество. Также, выпуклыми будут такие множества:

  • прямая , проходящая через точку x 0 в направлении вектора h :

;

  • луч , выходящий из точки x 0 в направлении вектора h :

;

  • гиперплоскости H p? с нормалью p :

;

  • полупространства на которые гиперплоскости разделяет пространство:

,

.

Все перечисленные множества (кроме пули ) является частным случаем выпуклой множества полиэдры.

 

Свойства выпуклых множеств

  • Пересечение выпуклых множеств является выпуклым.
  • Линейная комбинация точек выпуклой множества выпуклая.
  • Выпуклая множество содержит любую выпуклую комбинацию своих точек.
  • Любую точку n -мерного евклидова пространства с выпуклой оболочки множества можно представить как выпуклую комбинацию не более n +1 точек этого множества

 

 

Рассмотрим n - мерное евклидово пространство и пусть  точка в этом пространстве.

Рассмотрим две точки и , принадлежащие .Множество точек , которые могут быть представлены в виде

(в координатах это записывается так:

,

называется выпуклой комбинациейточек и , или

отрезком, соединяющим точки и . Сами точки и называются концами отрезка. В случаях n =2 и n =3 это  отрезок в обычном понимании этого слова на плоскости или в пространстве (см. рис. 12). Заметим, что при  =0 , а при  =1 , т.е. при  =0 и  =1 получаются концы отрезка.

 

Пусть в заданы k точек . Точка

,

где все и называется выпуклой комбинациейточек .

Пусть есть некоторая область в пространстве (другими словами,

G есть некоторое множество точек из ).

Определение. Множество (область) называется выпуклым, если из того, что и следует, что для   [0,1]. Другими словами, G  выпуклое множество, если оно, вместе с любыми двумя своими точками, содержит в себе отрезок, соединяющий эти точки.

 

На этих рисунках "а" и "б" - выпуклые множества, а "в" не является выпуклым множеством, так как в нём есть такая пара точек, что соединяющий их отрезок не весь принадлежит этому множеству.

Теорема 1. Пусть G  выпуклое множество. Тогда любая выпуклая комбинация точек, принадлежащих этому множеству, также принадлежит этому множеству.

Доказательство

Пусть  точки, принадлежащие множеству G .

Докажем теорему методом математической индукции. При k =2 теорема верна, так как она просто переходит в определение выпуклого множества.

Пусть теорема верна для некоторого k. Возьмём точку и рассмотрим выпуклую комбинацию

,

где все и .

 

Представим в виде

Но коэффициенты и

,

и, раз мы считаем, что для k теорема верна, точка

.

Но тогда является выпуклой комбинацией точек

и и, по определению выпуклого множества, .

Теорема доказана.

Теорема 2. Допустимая область задачи линейного программирования является выпуклым множеством.

Доказательство.

1. В стандартной форме в матричных обозначениях допустимая область G определяется условием

Пусть и принадлежат G , т.е.

Но тогда для имеем


т.е. x принадлежит G и, следовательно, выпукло.

 

2. В канонической формеобласть G определена условиями

Пусть и принадлежат G, т.е.

.

Но тогда для имеем

т.е. и, следовательно, G выпукло. Теорема доказана.

Таким образом, допустимая область в задаче линейного программирования является выпуклым множеством. По аналогии с двумерным или трехмерным случаями, при любом n эту область называют выпуклым

многогранникомв n - мерном пространстве  

 

Теорема 3. Множество оптимальных планов задачи линейного программирования выпукло (если оно не пусто).

Доказательство

Если решение задачи линейного программирования единственно, то оно выпукло по определению  точка считается выпуклым множеством Пусть теперь и два оптимальных плана задачи линейного программирования.

Тогда и .

 

Рассмотрим . В силу выпуклости области

 

допустимых значений, . Но для этого плана

т.е. есть также оптимальный план и, в силу этого, множество оптимальный планов выпукло. Теорема доказана.

Теорема 4. Для того, чтобы задача линейного программирования имела решение, необходимо и достаточно, чтобы целевая функция на допустимом множестве была ограничена сверху (при решении задачи на максимум) или снизу (при решении задачи на минимум).

Эту теорему мы даем без доказательства.

 

 

Вопрос 9:



2015-11-20 3037 Обсуждений (0)
Свойства выпуклых множеств 4.75 из 5.00 4 оценки









Обсуждение в статье: Свойства выпуклых множеств

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (3037)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)