Мегаобучалка Главная | О нас | Обратная связь


Электропроводность металлов



2015-11-23 1650 Обсуждений (0)
Электропроводность металлов 0.00 из 5.00 0 оценок




Деление твёрдых тел на проводники, полупроводники и диэлектрики связано со строением их энергетических зон. Теория энергетических зон рассмотрена во введении к данному циклу работ.

В металле зона проводимости заполнена электронами не целиком, а лишь частично, приблизительно до уровня Ферми. По этой причине электроны в металле свободны и могут переходить с занятых уровней на свободные под влиянием слабых электрических полей. Концентрация свободных электронов в металле велика (порядка ~ 1028 м-3), поэтому от температуры и других внешних факторов она зависит слабо. По этой причине согласно (6), температурная зависимость удельной проводимости, а значит и сопротивления, определяется изменением подвижности электронов. При этом существенным является то, что электронный газ в металле вырожден, т.е. его энергия является не температурой, а концентрацией электронов. Действительно, электроны в металле занимают энергетические уровни до уровня Ферми, который отстоит от «дна» валентной зоны на несколько электрон-вольт. Тепловая же энергия электронов (~ ) при обычных температурах намного меньше, порядка ~ 10-2 эВ. Следовательно, поглощать тепловую энергию могут лишь немногие электроны с верхних уровней. Средняя энергия электронов, таким образом, почти не меняется с увеличением температуры.

У электронного газа, находящегося в состоянии вырождения , скорости хаотического движения электронов также определяются не температурой тела, а концентрацией носителей заряда. Эти скорости могут в десятки раз превышать среднюю скорость теплового движения, вычисленную из классической теории ( »105 м/с), т.е. »106 м/с.

Движущиеся электроны обладают как корпускулярными, так и волновыми свойствами. Длина волны электрона определяется формулой де Бройля:

 

, (8)

где - постоянная Планка,

- скорость электрона,

- эффективная масса электрона (понятие вводится для того, чтобы описать его движение носителя в твёрдом теле).

Подставив значение скорости =106 м/с в (8), найдём длину волны де Бройля для электрона в металле, она составляет величину 0,4 – 0,9 нм.

Итак, в металлических проводниках, где длина волны электрона порядка 0,5 нм, микродефекты создают значительное рассеяние электронных волн. Скорость направленного движения электронов при этом уменьшается, что согласно (4) приводит к уменьшению подвижности. Подвижность электронов в металле сравнительно невелика. В таблице 1 приведены подвижности электронов для некоторых металлов и полупроводников.

 

Таблица 1. Подвижность электронов в различных материалах при =300 К

Металл , м2/(В×с) Полупроводник , м2/(В×с)
Ag 0,0018 Ge 0,39
Al 0,0053 Si 0,14
Cu 0,0080 InSb 7,80

 

С увеличением температуры увеличиваются колебания узлов решётки и появляется всё больше и больше препятствий на пути направленного движения электронов и электропроводность уменьшается, а сопротивление металла растёт.

Опыт показывает, что для чистых металлов зависимость от температуры линейна:

, (9)

где - термический коэффициент сопротивления,

- температура по шкале Цельсия,

- сопротивление при =0°С.

Для определения и необходимо построить график зависимости .

Рис.1. Зависимость сопротивления металла от температуры

Точка пересечения прямой с осью даст значение . Значение находится по формуле:

 

(10)



2015-11-23 1650 Обсуждений (0)
Электропроводность металлов 0.00 из 5.00 0 оценок









Обсуждение в статье: Электропроводность металлов

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1650)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)