Вычисление пределов функций. Раскрытие неопределенностей
Правило.Для вычисления предела функции в точке или при надо применить теоремы о пределах и подставить предельное значение аргумента. Для всех основных элементарных функций в любой точке их области определения имеет место равенство .
Примеры Найти пределы функций: 2. ;
3. ;
4. ;
5. .
При вычислении пределов функций формальная подстановка вместо х предельного значения часто приводит к неопределенным выражениям вида: , , , , , , . Например, или . Выражения вида , , , , , , называются неопределенностями. Вычисление предела функции в этих случаях называют раскрытием неопределенности. Рассмотрим правила раскрытия таких неопределенностей.
Неопределенность вида Если и при ( ), то говорят, что их частное представляет собой неопределенность вида .
Правило.Чтобы раскрыть неопределенность вида , заданную отношением двух многочленов, надо и числитель и знаменатель разделить на самую высокую входящую в них степень х. Например, .
Рассмотрим дробно−рациональную функцию ( ), представляющую собой отношение двух многочленов относительно х степеней m и n соответственно, и исследуем поведение этой функции при . При нахождении предела данной функции при могут иметь место три варианта ответа:
Из этого следует, что предел отношения двух многочленов при во всех случаях равен пределу отношения их старших членов.
Примеры Найти пределы функций: 1. ;
2. ;
3. .
Неопределенность вида Если требуется найти , где и − бесконечно малые функции при ( ), т.е. , то в этом случае вычисление предела называют раскрытием неопределенности вида . Рассмотрим возможные приемы раскрытия такой неопределенности.
Выделение критического множителя Правило.Чтобы раскрыть неопределенность вида , заданную отношением двух многочленов, надо и в числителе и в знаменателе выделить критический множитель и сократить на него дробь.
Примеры Найти пределы функций: 1. ;
2. ;
Преобразование иррациональных выражений Правило.Чтобы раскрыть неопределенность вида , в которой числитель или знаменатель, или тот и другой иррациональны, надо: − перенести иррациональность из числителя в знаменатель, или из знаменателя в числитель, домножив дробь на сопряженные выражения, − либо сделать замену переменной. Замечание. Если под знаком предела делается замена переменной, то все величины, входящие под знак предела, должны быть выражены через эту новую переменную. Из равенства, выражающего зависимость между старой переменной и новой, должен быть определен предел новой переменной.
Примеры Найти пределы функций: 1. ;
2. ;
3. ;
4. .
Популярное: Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (3057)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |