Мегаобучалка Главная | О нас | Обратная связь


В. структурно-функциональная ОРГАНИЗАЦИЯ G-БЕЛКОВ



2015-12-04 2483 Обсуждений (0)
В. структурно-функциональная ОРГАНИЗАЦИЯ G-БЕЛКОВ 5.00 из 5.00 3 оценки




G-белки (ГТФ-связывающие белки) — универсальные посредники при передаче сигналов от рецепторов к ферментам клеточной мембра­ны, катализирующим образование вторичных посредников гормонального сигнала. G-белки - олигомеры, состоящие из α, β и γ-субъединиц. Состав димеров βγ незначительно раз­личаются в разных тканях, но в пределах одной клетки все G-белки, как правило, имеют оди­наковый комплект βγ-субъединиц. Поэтому G-белки принято различать по их α-субъединицам.. Выявлено 16 генов, кодирующих различные α-субъединицы G-белков. Некоторые из генов имеют более одного белка, вследствие альтер­нативного сплайсинга РНК.

Каждая α-субъединица в составе G -белка имеет специфические центры:

• связывания ГТФ или ГДФ;

• взаимодействия с рецептором;

• связывания с βγ-субъединицами;

• фосфорилирования под действием протеин­киназы С;

• взаимодействия с ферментом аденилатциклазой или фосфолипазой С.

В структуре G -белков отсутствуют α-спиральные, пронизывающие мембрану домены. G -бел­ки относят к группе «заякоренных» белков (рис. 5-34).

 

Рис. 5-34. Положение G-белков в мембране.Для ассоциации G-белков важно ацилирование α-протомеров алифатическими радикалами жирных кислот, миристиновой кислоты (М) или изопреновой. γ-Субъединица G-белка имеет геранил-геранильную группу (Г), связанную тиоэфирной связью с остатком цистеина С-конца.

 

Регуляция активностиG -белков

Различают неактивную форму G -белка - комплекс αβγ-ГДФ и активированную форму αβγ -ГТФ. Активация G-белка происходит при взаимодействии с комплексом активатор-рецеп­тор, изменение конформации G-белка снижает сродство α-субъединицы к молекуле ГДФ и уве­личивает к ГТФ. Замена ГДФ на ГТФ в актив­ном центре G-белка нарушает комплементарность между α-ГТФ и βγ-субъединицами. Рецептор, связанный с сигнальной молекулой, может активировать большое количество моле­кул G-белка, таким образом обеспечивая уси­ление внеклеточного сигнала на этом этапе (рис. 5-35).

Рис. 5-35. Цикл функционирования G-белка.Rs — рецептор; Г — гормон; АЦ — аденилатциклаза.

 

Активированная α-субъединица G-белка (α-ГТФ) взаимодействует со специфическим белком клеточной мембраны и изменяет его ак­тивность. Такими белками могут быть фермен­ты аденилатциклаза, фосфолипаза С, фосфодиэстераза цГМФ, Na+-каналы, К+-каналы.

Следующий этап цикла функционирования G-белка — дефосфорилирование ГТФ, связанного с α-субъединицей, причём фермент, катализи­рующий эту реакцию, — сама α-субъединица.

Дефосфорилирование приводит к образованию комплекса α-ГДФ, который не комплементарен специфическому белку мембраны (например, аденилатциклазе), но имеет высокое сродство к βγ-протомерам. G-белок возвращается к неак­тивной форме — αβγ-ГДФ. При последующей активации рецептора и замене молекулы ГДФ на ГТФ цикл повторяется снова. Таким обра­зом, α-субъединицы G-белков совершают чел­ночное движение, перенося стимулирующий или ингибирующий сигнал от рецептора, который ак­тивирован первичным посредником (например, гормоном), на фермент, катализирующий обра­зование вторичного посредника.

Некоторые формы протеинкиназ могут фосфорилировать α-субъединицы G-белков. Фосфорилированная α-субъединица не комплементарна специфическому белку мембраны, например, аденилатциклазе или фосфолипазе С, поэтому не может участвовать в передаче сигнала.

 

Г. аденилатциклаза

Фермент аденилатциклаза, катализирующий превращение АТФ в цАМФ (рис. 5-36), — клю­чевой фермент аденилатциклазной системы пе­редачи сигнала. Аденилатциклаза обнаружена во всех типах клеток.

Рис. 5-36. Образование циклического аденозинмонофосфата (цАМФ).

Фермент относят к группе интегральных бел­ков клеточной мембраны, он имеет 12 транс­мембранных доменов. Внеклеточные фраг­менты аденилатциклазы гликозилированы. Цитоплазматические домены аденилатциклазы имеют два каталитических центра, ответственных за образование цАМФ — вторичного по средника, участвующего в регуляции активности фермента протеинкиназы А.

На активность аденилатциклазы оказывают влияние как внеклеточные, так и внутриклеточные регуляторы. Внеклеточные регулятор (гормоны, эйкозаноиды, биогенные амины) осуществляют регуляцию через специфические рецепторы, которые с помощью α-субъединиц G-белков передают сигналы на аденилатциклазу. αs- Субъединица (стимулирующая) при взаимодействии с аденилатциклазой активирует фермент, αi- Субъединица (ингибирующая) ингибирует фермент. В свою очередь, аденилатциклаза стимурирует проявление ГТФ- фосфотазной активности α- субъединиц. В результате дефосфорилирования ГТФ образуются субъединицы аs-ГДФ и аi-ГДФ, не комплементарные аденилатциклазе.

Из 8 изученных изоформ аденилатциклазы 4 — Са2+-зависимые (активируются Са2+). Ре­гуляция аденилатциклазы внутриклеточным кальцием позволяет клетке интегрировать ак­тивность двух основных вторичных посредни­ков цАМФ и Са2+.

 

Д. фосфолипазы

Фосфолипазы — ферменты класса гидролаз, катализирующие катаболизм глицерофосфолипидов. Различают фосфолипазы секреторные, входящие в состав панкреатического сока, и клеточные фосфолипазы. Клеточные фосфоли­пазы А1 , А2, D, С различаются по специфично­сти к отщепляемой группе. Все фосфолипазы — кальций зависимые ферменты (рис. 5-37).

Рис. 5-37. Действие фосфолипаз.

Фосфолипаза С— фермент, гидролизующий фосфоэфирную связь в глицерофосфолипидах. В клетках человека идентифицировано 10 изоформ фосфолипазы С, различающихся по молекулярной массе, локализации, способу регуляции, субстратной специфичности. В структуре всех изоформ фосфолипазы С отсутствуют гидрофобные домены, которые могли бы обеспечить их взаимодействие с мембраной. Однако некоторые формы фосфолипазы С связаны с помощью гидрофобного «якоря» — ацильного остатка миристиновой кислоты или за счёт взаимодействия с поверхностью бислоя. Каталитическая активность всех изоформ фосфолипазы С зависит от ионов кальция.

Большинство фосфолипаз С специфично в отношении фосфатидилинозитолов и практически не гидролизует другие типы фосфолипидов. Активный фермент может гидролизовать до 50% от общего количества фосфатидилино­зитолов клеточной мембраны. При гидролизе фосфатидилинозитол-4,5-бисфосфата (ФИФ2) образуются продукты диацилглицерол (ДАГ) и инозитол-1,4,5-трифосфат (ИФ3), служащие вторичными посредниками в трансмембранной передаче сигнала по инозитолфосфатному пути.

 

Е. протеинкиназы

Все полярные сигнальные молекулы, действу­ющие на клетку-мишень через мембранные ре­цепторы, осуществляют свою биологическую фун­кцию путём фосфорилирования специфических белков и ферментов, регулирующих метаболизм в клетке. Фосфорилирование изменяет (увеличи­вает или уменьшает) их активность. Катализиру­ют фосфорилирование белков (протеинов) протеинкиназы по аминокислотным остаткам серина, треонина, тирозина. Протеинкиназы могут быть субъединицей мембранного рецептора, например тирозиновая протеинкиназа рецептора инсулина, активность которой регулируется гормоном. Дру­гая группа — протеинкиназы, регулируемые вто­ричными вестниками гормонального сигнала (цАМФ, цГМФ, Са2+, ДАГ), например протеин­киназа А, протеинкиназа С, протеинкиназа G, кальмодулинзависимые протеинкиназы и др.

Протеинкиназы А

Протеинкиназы А (цАМФ-стимулируемые) участвуют в аденилатциклазной системе переда­чи сигнала. Протеинкиназа А состоит из 4 субъе­диниц R2С2 — двух регуляторных субъединиц (R2) и двух каталитических (С2) (см. рис. 5-41). Ком­плекс R2С2 не обладает ферментативной актив­ностью.

Комплекс R2С2 разными способами прикреп­ляется к мембране. Некоторые формы протеин­киназы А «заякориваются» с помощью али­фатического остатка миристиновой кислоты ка­талитических субъединиц. Во многих тканях про­теинкиназа А связана с «заякоренным» белком АКАРs (от англ. сАМР dependent protein kinase anchoring proteins). АКАРs имеет центр связыва­ния для регуляторных субъединиц протеинкина­зы А. С помощью белка АКАРs протеинкиназа А связывается с мембраной в области локализации ферментов, катализирующих образование цАМФ (аденилатциклаза) или его гидролиз (фосфодиэстераза), а также белков, в регуляции активности которых фермент принимает участие, например потенциалзависимые Са2+-каналы.

Регуляторные субъединицы протеинкиназы А имеют специфические центры для связывания цАМФ. Присоединение цАМФ к регуляторным, субъединицам приводит к изменению конформации последних и снижению сродства к каталитическим субъединицам С, происходит диссоциация по схеме:

цАМФ4 + R2С2 -> цАМФ4 R2 + С + С

Субъединицы С представляют собой активную форму протеинкиназы А, которая катализирует реакции фосфорилирования по серину и треонину. Каталитические субъединицы С у разных типов протеинкиназ а не идентичны, они различаются прежде всего специфичностью в отношении белков-субстратов.

Протеинкиназы С

 

Протеинкиназы С участвуют в инозитолфосфатной системе передачи сигнала. Фермент со­стоит из двух функционально различных до­менов — регуляторного и каталитического. Регуляторный домен содержит 2 структуры («цинковые пальцы»),образованные фрагмента­ми пептидной цепи, богатыми цистеином, и содержащими 2 иона цинка (см. раздел 1). «Цинковые пальцы» участвуют в связывании диацилглицерола. Другой фрагмент регуляторно­го домена имеет высокое сродство к Са2+. По­вышение концентрации кальция в цитозоле увеличивает сродство протеинкиназы С к фосфатидилсерину мембраны. Транслокация про­теинкиназы С к мембране позволяет ферменту связаться с ДАГ, который ещё больше повыша­ет сродство протеинкиназы С к ионам кальция (рис. 5-38). Наиболее распространённые изоформы протеинкиназы С активируются Са2+, диацилглицеролом и фосфатидилсерином.

.5-38. Регуляция активности протеинкиназы С (ПКС). ФС — фосфатидилсерин; ДАГ — диаципглицерол.

 

Каталитический домен имеет центр, связывающий АТФ и белок-субстрат. Активная фермента протеинкиназы С фосфорилирует по остаткам серина и треонина. Снижение концентрации ионов кальция в клетке нарушает связь протеинкиназы С с фосфатидилсерином и диацилглицеролом, фермент переходит в неактивную форму и отделяется от мембраны.

3. ПротеинкиназыG

 

В отличие от протеинкиназы А, протеинкиназа G присутствует не во всех тканях, ее обнаруживают в лёгких, мозжечке, гладких мышцах и тромбоцитах. Изоформы протеинкиназы G могут быть связаны с мембраной или находиться цитоплазме. Растворимая протеинкиназа С состоит из двух идентичных субъединиц, каждая из которых имеет два центра для связывания цГМФ. Приединение цГМФ к регуляторным центрам вызывает конформационные изменения субъединиц и повышает каталитическую активность фермента (рис. 5-39). Протеинкиназа G, подобно протеинкиназе А и С, специфична в отношении определённых белковых субстратов, которые она фосфорилирует по остаткам серина и треонина.

Рис. 5-39. Регуляция активности протеинкиназы G (ПКG).

 

Ж фосфодиэстеразы

 

Фосфодиэстеразы — ферменты, катализирующие превращение цАМФ (рис. 5-40) или цГМФ в неактивные метаболиты АМФ или ГМФ. Фосфодиэстеразы, снижая концентрации вторичных посредников, разрывают цепь превращений, вызванных активатором рецептора.

 

Рис.5-40. Превращение цАМФ в АМФ.

Фосфодиэстеразы присутствуют в клетках тка­ней в 2 формах: в форме растворимого белка и мембранносвязанного. Формы фермента, связан­ные с мембраной, в разных тканях составляют 5—40%. В одной и той же ткани могут присут­ствовать разные формы фосфодиэстеразы, раз­личающиеся по сродству к субстратам, молеку­лярному весу, заряду, регуляторным свойствам и локализации в клетке.

Фосфодиэстеразы циклических нуклеотидов не обладают абсолютной специфичностью, по­этому, как правило, одна и та же форма фер­мента способна гидролизовать как цАМФ, так и цГМФ. Однако скорости гидролиза этих двух нуклеотидов под действием одной и той же фосфодиэстеразы могут значительно различать­ся. Это зависит от того, какая фосфодиэстераза присутствует в клетке — более специфичная в отношении цАМФ или более специфичная к цГМФ, от соотношения концентраций цАМФ и цГМФ в клетке и от действия регуляторов фосфодиэстеразы.

В большинстве тканей присутствует фосфоди­эстераза-1, более специфичная к цАМФ, активи­руемая Са2+, комплексом 4 Са2+-кальмодулин и цГМФ.



2015-12-04 2483 Обсуждений (0)
В. структурно-функциональная ОРГАНИЗАЦИЯ G-БЕЛКОВ 5.00 из 5.00 3 оценки









Обсуждение в статье: В. структурно-функциональная ОРГАНИЗАЦИЯ G-БЕЛКОВ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2483)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)