Мегаобучалка Главная | О нас | Обратная связь


Переход на композиционные материалы



2015-12-04 453 Обсуждений (0)
Переход на композиционные материалы 0.00 из 5.00 0 оценок




Причин перехода на композиционные материалы несколько. Во-первых, наметился быстрый рост пассажирских и грузовых перевозок, объем которых, по прогнозам специализированной аналитической группы Airline Monitor, в период с 2008 по 2026 гг. увеличится втрое, что потребует в два раза увеличить парк магистральных авиалайнеров. Во-вторых, в условиях высоких цен на топливо cамолетостроительным компаниям приходится разрабатывать и готовить серийный выпуск экономичных моделей авиалайнеров. Поскольку с композитами «уживается» только титан, спрос гражданского самолетостроения на титановые полуфабрикаты возрастет к 2015 г. примерно в два раза.

Коррозионная стойкость титана и его сплавов делает их весьма ценным материалом на море. Малый удельный вес металла в сочетании с коррозионной стойкостью повышает маневренность и дальность действия кораблей, а также снижает расходы по уходу за материальной частью и ее ремонту.

Применение титана

Применение титана в военно-морском деле включает изготовление выхлопных глушителей для дизельных двигателей подводных лодок, дисков измерительных приборов, тонкостенных труб для конденсаторов и теплообменников. По мнению специалистов, титан, как никакой другой металл, способен увеличить срок службы выхлопных глушителей на подводных лодках. Применительно к дискам измерительных приборов, работающих в условиях соприкосновения с соленой водой, бензином или маслом, титан обеспечит лучшую стойкость. Исследуется возможность применения титана для изготовления труб теплообменников, которые должны обладать коррозионной стойкостью в морской воде, омывающей трубы снаружи, и одновременно противостоять воздействию выхлопного конденсата, протекающего внутри них. Рассматривается возможность изготовления из титана антенн и узлов радиолокационных установок, от которых требуется стойкость к воздействию дымовых газов и морской воды. Титан может найти применение и для производства таких деталей, как клапаны, пропеллеры, детали турбин и т. д.

Специалисты научно-исследовательского института конструкционных материалов «Прометей» при государственной поддержке Федерального агентства по науке и инновациям (Роснаука) начали в 2009 г. разработку усовершенствованных технологий производства из титановых сплавов так называемых крупногабаритных полуфабрикатов (заготовок крупных узлов и деталей) для морских судов и «оффшорной техники», предназначенной для работ на шельфах. Такие заготовки из титановых сплавов могут применяться для изготовления сверхлёгких, прочных и стойких к коррозии деталей самых разных типов судов, например, исследующих морские глубины, или связанные с добычей углеводородного сырья.

Существенный недостаток титановых сплавов только один – высокий коэффициент трения «металл по металлу», титан попросту «задирается» при трении из-за повышенной вязкости. Поэтому для деталей из титановых сплавов (в первую очередь, для различных т. н. «узлов трения») необходимо напыление специальных покрытий, придающих необходимые антифрикционные свойства. В качестве «кандидатов» на создание таких покрытий ученые намерены всесторонне исследовать различные высокопрочные материалы на основе оксидов алюминия, циркония и хрома.

Металл потребляет артиллерия, где в настоящее время ведутся интенсивные исследования различных опытных образцов. Были исследованы различные детали артиллерийского оборудования с точки зрения возможности замены титаном обычных материалов при условии снижения цен на титан. Главное внимание уделялось деталям, для которых существенно снижение веса (детали, переносимые вручную и перевозимые по воздуху).
Опорная плита миномета, изготовленная из титана вместо стали. Путем такой замены и после некоторой переделки вместо стальной плиты из двух половинок общим весом 22 кг удалось создать одну деталь весом 11 кг. Благодаря такой замене можно уменьшить число обслуживающего персонала с трех человек до двух. Рассматривается возможность применения титана для изготовления орудийных пламегасителей.
Проходят испытания изготовленные из титана орудийные станки, крестовины лафетов и цилиндры противооткатных приспособлений. Широкое применение титан может получить при производстве управляемых снарядов и ракет.

Сплавы титана повышенного качества позволяют надеяться на возможность замены стальных плит титановыми равной толщины, что дает экономию в весе до 44%. Промышленное применение титана позволит обеспечить большую маневренность, увеличит дальность перевозки и долговечность орудия. Современный уровень развития воздушного транспорта делает очевидными преимущества легких броневиков и других машин из титана. Артиллерийское ведомство намерено снарядить в будущем пехоту касками, штыками, гранатометами и ручными огнеметами, сделанными из титана. Первое применение в артиллерии титановый сплав получил для изготовления поршня некоторых автоматических орудий.

Титан и его сплавы используются медицинской промышленностью для изготовления не только хирургических инструментов, но и наркозно-дыхательных аппаратов, «искусственных» сердца, легких, почек, защитных устройств радиологической аппаратуры.

Биологическая инертность титана превосходит все известные марки нержавеющей стали и даже специальный кобальтовый сплав «виталлиум». Технически чистый титан и его сплавы содержат гораздо меньше примесей, чем другие, применяющиеся в медицине сплавы, он хорошо переносится человеческим организмом, обрастает костной и мышечной тканью, не корродирует и агрессивных средах человеческого тела (в лимфе, крови, желудочном соке), структура окружающей титановый элемент ткани не изменяется на протяжении десятилетий. Эти свойства титана в сочетании с его высокими механическими качествами позволяют широко использовать его для металлического остеосинтеза – распространенного способа лечения переломов костей. Из него изготавливают для наружных и внутренних протезов стержни, спицы, гвозди, болты, скобы, внутрикостные фиксаторы, а также протезы бедренных костей, тазобедренных суставов и челюстно-лицевых костей. Как известно, детали для остеосинтеза даже из самых высококачественных сортов нержавеющей стали приводят со временем к самым различным осложнениям, связанным с коррозией и разрушением этих деталей, повреждением костных и мышечных тканей продуктами коррозии. Из-за реакции их с физиологическими солями организма происходят воспаления тканей, возникают болевые ощущения. Костные фиксаторы и любые протезы из титана осложнений и воспалений не дают, они могут находиться я человеческом организме сколь угодно долго, практически вечно. Титан, обладая высокой усталостной прочностью при знакопеременных нагрузках, как нельзя лучше служит в качестве протезов костей, постоянно подвергающихся переменным нагрузкам. Кроме того, его немагнитность и слабая электропроводность позволяют проводить физиотерапевтическое лечение больных с титановыми протезами без осложнений. Малая плотность и высокие прочностные свойства титана позволяют почти вдвое уменьшать вес и объем протезов. Эти качества делают титан практически незаменимым материалом в костной хирургии. Он может использоваться в стоматологии (искусственные зубы) и офтальмологии (имплантат глазного яблока). Имеются попытки изготовления из титана миниатюрного, массой 300 г, искусственного сердца. Наряду с нейлоновыми для вживания в сердце используются и титановые клапаны. Детали и конструкции из титана сравнительно несложны в изготовлении и сравнительно недороги, во всяком случае проще и дешевле, чем применяемые ныне сплавы типа «виталан» или «комохром»[7].

Остановимся еще на нескольких областях применения титана.

Атомная энергетика: оболочки реакторов на быстрых нейтронах, конструктивные детали ядерных реакторов с водяным охлаждением, футеровка реакторов тонкими пористыми или перфорированными листами титана, титановые электроды в плазменных установках.
Приборостроение: зеркала телескопов, затворы кино- и фотокамер, мембраны телефонов, гибкие трубки для бронирования кабелей.
Электроника: создание высокого вакуума в электронно-лучевых трубках (используется свойство расплавленного титана энергично поглощать газы), аноды высоковольтных кенотронов и катоды поляризационных электролитических конденсаторов, сетки электронных ламп с минимальной эмиссией, тонкопленочные интегральные схемы и тонкопленочные конденсаторы; электронные трубки микроскопических размеров.
Военная техника: опорные плиты минометов, лафеты, кронштейны, станки орудий, пламегасители, атомные орудия малой мощности, облегченная броня, равная по снарядостойкости стальной броне, детали танкостроения; многие виды оружия и снаряжения для десантных войск.
Экспедиционное и спортивное снаряжение: инвентарь для антарктических и других экспедиций, снаряжение для альпинистов и пожарных, ружья для подводной охоты, мачты гоночных яхт, лыжные палки, теннисные ракетки, шары и клюшки для гольфа и др.
Бытовая техника и приборы: кухонные приборы, садовые инструменты, шариковые и перьевые авторучки.

Монументальное искусство: из титана созданы памятник Ю.А.Гагарину и монумент покорителям космоса в Москве, обелиск в честь успехов в освоении Вселенной в Женеве.

Есть еще один, совершенно необычный аспект применения титана – колокольный звон. Колокола, отлитые из этого металла, обладают необычным, очень красивым звучанием. Применяется титан в колокольчиках для электрозвонков.

Главными потребителями двуокиси титана являются лакокрасочная промышленность, использующая 60-65% всей производимой двуокиси титана, бумажная промышленность (12-16%) и производство пластмассы (10-14%). Остальное потребляется химической промышленностью для производства химволокна, искусственной кожи.

Помимо надежности и долговечности, титановые краски дают еще и чисто экономические выгоды: сокращается расход лакокрасочных материалов на единицу окрашиваемой поверхности и уменьшаются затраты труда на окраску в связи с сокращением числа наносимых слоев[1, C.103-128].
Титан – это металл будущего, благодаря обширным запасам он имеет перспективу стать основным металлом грядущих лет, поскольку его характеристики выигрывают по сравнению с характеристиками железа и алюминия во всех областях применения. Титан изначально предназначался для использования в военной и оборонной промышленности, но с течением времени он получает все большее распространение в мирных областях – народном хозяйстве, гражданской авиации, медицине и морских исследованиях, спорте и автомобилестроении. Своими свойствами и качеством изделий титан доказал целесообразность своего применения вместо привычных нам железа и алюминия – с практической, экономической и экологической точек зрения.

 

 



2015-12-04 453 Обсуждений (0)
Переход на композиционные материалы 0.00 из 5.00 0 оценок









Обсуждение в статье: Переход на композиционные материалы

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (453)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)