Мегаобучалка Главная | О нас | Обратная связь


Топливные элементы с прямым окислением угля (DCFC)



2015-12-06 1068 Обсуждений (0)
Топливные элементы с прямым окислением угля (DCFC) 0.00 из 5.00 0 оценок




Топливный элемент - это, попросту говоря, "батарейка", в которой энергия топлива сразу превращается в электричество. В нее подается (например, по трубкам) топливо и воздух, они реагируют внутри элемента, и в итоге получаются продукты сгорания и электричество. Наиболее известны топливные элементы на водороде. Также последнее время в новостях стали мелькать топливные элементы на метиловом спирте. Вообще-то, по расхожему мнению, топливные элементы - это сложный и дорогостоящий продукт высоких технологий, который трудно изготовить и для которого требуется экзотическое топливо.

Как выяснилось, существуют топливные элементы очень простой конструкции, которые:

- не содержат драгоценных, редких, труднодобываемых или токсичных металлов
- могут быть изготовлены на технологическом уровне железного века, т.е., не требуют ничего сложного и экзотического. Тот, кто способен сделать подкову, изготовить глиняный горшок и сварить суп, может сделать и такой топливный элемент.
- в которых можно сжигать твёрдый уголь. Предоположительно, в них также можно сжигать аммиак и некоторые горючие газы, правда, для этого их конструкция требует некоторых изменений (см. заявку на патент США номер US2009017345)

В англоязычных источниках их принято называть DCFC - direct coal fuel cell.

Эти элементы были изобретены Уильямом Жако и запантенованы в США в 1896 году, патент N 555511. Изобретатель построил установки мощностью до 2 л.с. и они периодически испытывались в течение нескольких месяцев. Энергетическая установка из таких элементов показывала КПД до 35%, что является очень высокой величиной КПД энергоустановки даже на сегодня. Однако, его оппоненты якобы доказали, что в его элементе нет сжигания угля, а есть только лишь термоэлектрическая генерация с КПД "всего" 8% (хотя даже если так, то это было бы рекордом КПД термоэлектрогенератора на то время). После этого, его изобретение было предано забвению до 1973 года и не упоминалось в [прочитанных мной] книгах и публикациях. После неудачных опытов Бауэра, проведённых в Германии в 30-х годах, в научных кругах установилось мнение, что прямое электрохимическое окисление угля технически нереализуемо. В начале 70-х исследовательская группа в США воспроизвела опыты Жако и убедилась в том, что Жако действительно создал топливный элемент, см. http://adsabs.harvard.edu//abs/1975stan.reptU....W

После этого, элементы с прямым окислением угля стали исследоваться. В США есть несколько организаций, которые этим занимаются, причём, использовались разные электрохимические схемы и разные конструкции элемента. Существует, как минимум, четыре разновидности таких элементов, см. обзор ниже. Результаты выглядят многообещающими (в том числе, и с экономической точки зрения) и деятельность в этом направлении ведётся и сейчас (судя по патентам).

Многие люди (наивно полагающие, что нам не хватает для счастья именно энергии), ждут как манны небесной открытия нового чудесного, экологически чистого и дешёвого источника энергии. Смогут ли действительно угольные топливные элементы стать таким источником? Если честно, то я пока что не знаю ответа на этот вопрос. Не доверяя научно-финансовой среде (особенно её финансовой составляющей), я решил заняться этим вопросом сам, однако мои ресурсы ограничены и мне тоже требуется время. Пока что я рассказываю о том, что получилось у других, что получилось у меня и чего можно ожидать. Похоже, что есть определённые шансы предоставить людям ещё один способ использования энергии биомассы, который будет в определённых случаях выигрывать по сравнению с другими способами.

За то время, пока я этим занимался, я понял, что корень экологических, экономических, политических и прочих проблем, которые обычно связывают с энергетикой - вовсе не в технике, а в людях, в том, что некому обуздать алчность людей и их любовь к комфорту. Однако, раз дело начато, то его нужно всё же доделать до конца. Если мне удастся внести заметный вклад хотя бы в то, что люди станут больше использовать чистых источников электричества и меньше грязных, то уже можно будет считать, что я прожил жизнь не зря.

Вот с чего всё началось. Статья изобретателя, Уильяма Жако:
http://www.rexresearch.com/jacques/jacques.htm. Этот же документ в моем кривом переводе вот здесь.

DCFC от sara.com - история, статус, индустриальная программа - sara.com наиболее близко следует по пути, проложенному Жако. Фактически, их основная заслуга состоит в том, что они построили элемент, идентичный элементу Жако и доказали его работоспособность. Также они работали над стабилизацией электролита и вроде бы в этом преуспели, хотя лично я этого пока что не проверил. Похоже, что где-то они местами приврали.

Есть еще несколько текстов, но их мне уже лень переводить целиком, поэтому делаю очень короткий обзор.

Собственный опыт

В 2005 году мне удалось сделать работающий прототип DCFC с корпусом из серебра. В 2008 я успешно испытал несколько вариантов элемента с железным корпусом. Вот здесь описано достаточно подробно, что я делал в 2005 году. В 2008 году, по сути, было то же самое, отличался только материал корпуса и другие малозначимые детали. Было испытано несколько вариантов, вот краткое описание наиболее интересных:

Корпус/катод Анод Токоотвод анода подача воздуха макс.мощность макс.ЭДС длительность опыта
Стаканчик 30 мл из нержавеющей стали Уголёк из троллейбусного токосьёмника размером 20x9x12мм Серебряный стальная трубка от тормозной трансмиссии автомобиля 100мВт 780мВ несколько минут, затем опыт прекращен
Стаканчик 30 мл из нержавеющей стали, катоды: - полоска жести от консервной банки - очень ржавая пластина из магнитопровода электромотора - трубка подачи воздуха то же то же то же единицы мВт (но и площадь катода была порядка 1см^2) 1000 с чем-то мВ порядка минуты, затем опыт прекращён
Отрезок трубы внутренним диаметром 15мм и длиной 40мм из ст2пс с приваренным дном и приваренным железным токоотводом графит неизвестного происхождения, длина 20мм, диаметр 6мм шпилька M4, вкрученная в графит то же, в воздух подавалось значительное количество водяного пара за время опыта мощность упала с 40 до 22 мВт 789мВ 3 часа
Отрезок трубы квадратного сечения, внутреннее сечение 12х12мм, длина 40мм, материал - ст1пс или ст1кп, с приваренным дном и приваренным железным токоотводом графит неизвестного происхождения, размером 7x7x35мм шпилька M4, вкрученная в графит данные утеряны 82мВт (14Вт/литр) 790мВ несколько минут, после чего весь электролит "выдулся" из элемента подаваемым воздухом
Отрезок трубы ст2пс, внутренний диаметр 12мм, высота 40мм, с приваренным дном и приваренным железным токоотводом, дополнительный катод из жести угольный электрод для резки металла, 15ф8мм шпилька M3, вкрученная в графит две трубки из нерж.стали вн.диам. 1мм 30-50мВт (5.7-7.6Вт/литр) при т-ре 530С 903мВ 3-4 часа

Электролитом во всех случаях служил расплав NaOH, иногда с добавкой MgO. Температура не измерялась, но, предположительно, была в районе 400-600С.

Из этих результатов можно сделать следующий вывод: элемент не просто жизнеспособен. Он неубиваем (однако, мировой науке понадобилось почти 80 лет, чтобы это признать). Он работает с любым электропроводным углём и со многими разновидностями железа. Как писал Жако, железо должно быть низкоуглеродистым. Если я ничего не путаю, крепёж делается из углеродистой стали, однако, наличие шпильки в катоде также не влияло на работоспособность. Удельная мощность порядка 10 Вт/л, видимо, достигается достаточно легко, хотя мне пока не удалось добиться такой мощности в длительном режиме. Жако и SARA достигли мощности порядка 30 Вт/л, при этом, непохоже, что кто-то из них старался максимизировать именно удельную мощность, шла просто обкатка технологии с целью убедиться в её жизнеспособности. Из общих соображений можно представить, что довольно легко будет добиться мощности в 50 Вт/л, а при некоторых ухищрениях - и 100 Вт/л. Тогда установка размером со стиральную машину выдаст порядка 3 киловатт в долговременном режиме (ей нужна хорошая теплоизоляция, которая съест около половины объёма). Элемент способен выдерживать 2-3 кратные перегрузки в течение нескольких секунд, т.е., пиковая мощность такой установки будет 6-10 кВт. Жако заставил поверхность варочной плиты обычной печи небольшими элементами и получил мощность в 1,5кВт:

Следующий вопрос - это экономика. Железо стоит достаточно дешёво и в пересчёте на киловатт мощности оно будет стоить несколько сотен рублей. Консервные банки являются мусором и не стоят ничего, а для использования в элементе они, судя по всему, подходят хорошо, особенно штампованные банки, у которых нет швов, кроме как сверху. Здесь нужно определить скорость их коррозии (судя по моим впечатлениям, она достаточно мала и просто в воде железо ржавеет быстрее). Уголь при малых масштабах использования можно считать условно-безплатным, т.к. его источник - это дрова в лесу. Угольный анод можно сделать самостоятельно, хотя это требует трудозатрат. NaOH достаточно дешёв, 1кг его стоит 30 рублей. При удельной мощности в 50вт/л потребуется примерно 30 кг NaOH на киловатт мощности (900 рублей). Однако, в элементе происходит вредная побочная реакция NaOH+CO2=Na2CO3, которая портит электролит, и со временем он застывает (температура плавления Na2CO3 намного выше). Но это не фатально, поскольку из Na2CO3 можно обратно сделать NaOH, как минимум, двумя способами, в одном из них (ферратном) нужно только топливо, вода и Fe2O3 (ржавчина). Для второго способа требуется известь, вода и топливо. В обоих способах расходуются только топливо и вода, а известь и ржавчина возвращаются и могут быть использованы в следующем цикле. Необходимо уточнить скорость реакции NaOH+CO2=Na2CO3, чтобы оценить энергозатраты на обратное преобразование Na2CO3->NaOH. Кроме того, Na2CO3 тоже является подходящим электролитом для элемента. Если идти по этому пути, нужно выяснить, насколько быстрее ржавеет железо в Na2CO3 и в итоге понять, что выгоднее - восстанавливать Na2CO3 в NaOH или увеличить затраты на обогрев элемента и чаще заменять железный катод. Также необходимо уточнить энергозатраты на приготовление угольного электрода (его нужно приготавливать спеканием). Ещё одна статья расходов - это связующее. Сейчас, когда я делаю угольный электрод из древесного угля, я использую до 50% сахара и это, конечно, дорого. Однако, всё это нужно лишь потому, что я ограничен в возможностях. Существуют и другие, более дешёвые связующие. Например, это могут быть продукты сухой перегонки древесины, в ходе которой как раз и производится древесный уголь. Также, у меня складывается впечатление, что необязательно делать электрод из мелкого порошка. Частицы древесного угля, прокалённые при жёлтом калении в течение даже нескольких минут и даже при небольшом доступе воздуха, становятся достаточно хорошими проводниками. То же касается обычной бумаги. Можно, например, попробовать смешать "жеваную бумагу" с такими кусочками угля, хотя я ещё этого не пробовал, или делать электроды из макулатуры, которая в десятки раз дешевле древесного угля.

Итак, фактически, этот элемент потребляет только уголь и воду. Также он может потреблять железо (катод может ржаветь), однако по заверениям Жако и по моему опыту, это происходит достаточно медленно. Если чего и стоит бояться, так это окисления железного сосуда снаружи от действия топочных газов.

Ещё некоторые проблемы и трудности:

1. Зола может частично растворяться в электролите и изменять его свойства (например, повышать температуру плавления или уменьшать электропроводность). Это может привести к расходу электролита. Однако, помимо NaOH, электролитом может служить и KOH, в этом случае элемент работает аналогично. Но древесная зола как раз состоит в основном из K2CO3. Из К2CO3 можно делать КOH с помощью извести, аналогично вышеописанному. Здесь нужно изучить вопрос влияния других компонент золы на работу элемента (прежде всего, они могут повышать температуру плавления электролита и это плохо).

2. Пары и брызги электролита. При подаче воздуха образуются брызги электролита, часть которых неизбежно уносится вместе с выхлопными газами. KOH и NaOH являются едкими веществами и наличие их паров в воздухе опасно для здоровья. Также не исключено, что они могут разъедать каменную кладку. Для решения этой проблемы можно промывать выхлопные газы водой. Пары NaOH и KOH весьма гигроскопичны и они хорошо улавливаются водой. При этом, будет улавливаться тепло отходящих газов (впрочем, оно не очень велико).



2015-12-06 1068 Обсуждений (0)
Топливные элементы с прямым окислением угля (DCFC) 0.00 из 5.00 0 оценок









Обсуждение в статье: Топливные элементы с прямым окислением угля (DCFC)

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1068)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)