Кривая нормального распределения
Лекция 3 Числовые характеристики наблюдений. Вычисления среднего арифметического для несгруппированных данных (или если частоты равны единице) производится по формуле: где n – объем наблюдений; хi – варианты наблюдений; Σ - знак суммирования. Если данные сгруппированы (частоты различны), то применяется формула: где ni – частоты разрядов; xi – срединные значение разрядов. Модой называют результат выборки или совокупности наиболее часто встречающийся в этой выборке. Для интервального ряда модальный интервал выбирается по наибольшей частоте. Медиана представляет собой результат измерения, который находится в середине ранжированного ряда.
Для того, чтобы увидеть в каком диапазоне рассеяны найденные значения признака, вычисляют характеристики рассеяния: размах варьирования, дисперсию s2; среднее квадратическое отклонение или стандартное отклонение s; коэффициент вариации V. Размах варьирования – определяется разностью между наибольшим и наименьшим результатами наблюдений. Дисперсия для несгруппированных данных вычисляется по формуле: Или в преобразованном виде: Для сгруппированных данных: . Среднее квадратическое отклонение или стандартное отклонение s рассчитывается по формуле: . Среднее квадратическое отклонение имеет ту же размерность, что и результаты измерений, то есть оно характеризует степень отклонения результатов от среднего значения. В практической статистике часто требуется определить уровень однородности выборочных наблюдений. Для этого используется безразмерный показатель – коэффициент вариации V: . Считается, что если коэффициент вариации не превышает 10%, то наблюдения можно считать однородными. Кроме того, коэффициент вариации часто используется при сопоставлении (сравнении) степени варьирования различных признаков, выраженных в различных единицах измерения. Кривая нормального распределения. Теоретическое распределение – распределение генеральной совокупности. Эмпирическое распределение – распределение выборки. Теоретическое распределение большинства измерений описывается формулой нормального распределения. . График имеет вид: По графику плотности нормального распределения видно, что форма кривой зависит от параметров – μ и σ, которые могут принимать любые значения. Следовательно, с каждым новым значение μ и σ будет возникать новая совокупность нормально распределенных данных. Поэтому используют нормированное распределение с параметрами: μ=0; σ=1. Для этого вводят обозначения: Плотность распределения вероятностей нормированного нормального распределения записывается выражением: . Вероятности попадания нормально распределенной случайной величины в заданный интервал:
То есть, отклонения большие, чем 3σ следует ожидать в трех случаях из 1000. Это соотношение называют «правилом трех сигм» и используют при исключении сильно отклоняющихся результатов измерений, считая их ошибочными.
Популярное: Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (325)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |