Мегаобучалка Главная | О нас | Обратная связь


Многопроцессорные компьютерные системы (МПКС). Архитектура Google



2015-12-07 817 Обсуждений (0)
Многопроцессорные компьютерные системы (МПКС). Архитектура Google 0.00 из 5.00 0 оценок




 

 

 

Приемы повышения производительности МПКС (Репликация и др.)

 

 

19 !CISC и RISC архитектуры.

В семидесятых годах прошлого столетия проектирование и изготовление центральных процессоров было занятием, принципиально доступным каждому. Если какому-нибудь сотруднику, скажем, Стэндфордского университета приходила в голову интересная идея, он мог легко набрать команду, основать фирму, найти инвесторов и уже через год-два выбросить на рынок свои CPU.

Через тридцать с небольшим лет процессоры усложнились до такой степени, что разработка хоть сколько-нибудь быстрого по современным меркам кристалла требует огромной армии инженеров, гигантских инвестиций и целого моря времени. И дело здесь отнюдь не в тонких кремниевых технологиях и стоящих миллиарды долларов полупроводниковых фабриках - просто уже в восьмидесятых годах разработка принципиально нового CPU требовала двух-трех, а в девяностых - пяти-шести лет напряженной работы. Те же китайцы, даже располагая подробной информацией о тридцатилетней истории проектирования процессоров, владея новейшими фабриками по производству кремниевых кристаллов и не стремясь изобретать что-то новое, потратили на разработку собственного простейшего MIPS32-подобного процессора Godson (примерно эквивалентного по производительности i486) несколько лет. Это не считая еще одного года, когда новый кристалл отлаживали. А на разработку MIPS64-подобной архитектуры с приемлемой производительностью (~Pentium III 500–600 МГц) у китайской Академии наук ушло еще четыре года, - четыре года, потраченных только на то, чтобы повторить успех более чем двенадцатилетней давности. Но почему все получается так сложно? Чтобы ответить на этот вопрос нам придется вернуться на 30-40 лет в прошлое.

Шаг первый. CISC

Так уж исторически сложилось, что поначалу совершенствование процессоров было направлено на то, чтобы сконструировать по возможности более функциональный компьютер, который позволил бы выполнять как можно больше разных инструкций. Во-первых, так было удобнее для программистов (компиляторы языков высокого уровня еще только начинали развиваться, и все по-настоящему важные программы писались на ассемблере), а во-вторых, использование сложных инструкций зачастую позволяло сильно сократить размеры написанной на ассемблере программы. А где меньше инструкций – меньше и затраченное на исполнение программы время.

Надо признать, что достигнутые на этом пути успехи действительно впечатляли - в последних версиях ЭВМ выразительность ассемблерного листинга зачастую не уступала выразительности программы, написанной на языке высокого уровня. Одной-единственной машинной инструкцией можно было сказать практически все, что угодно. К примеру, такие машины, как DEC VAX, аппаратно поддерживали инструкции "добавить элемент в очередь", "удалить элемент из очереди" и даже "провести интерполяцию полиномом" (!); а знаменитое семейство процессоров Motorola 68k почти для всех инструкций поддерживало до двенадцати (!) режимов адресации памяти, вплоть до взятия в качестве аргумента инструкции "данных, записанных по адресу, записанному вон в том регистре, со смещением, записанным вот в этом регистре". Отсюда и общее название соответствующих архитектур: CISC - Complex Instruction Set Computers ("компьютеры с набором инструкций на все случаи жизни").

На практике это привело к тому, что подобные инструкции оказалось сложно не только выполнять, но и просто декодировать (выделять из машинного кода новую инструкцию и отправлять ее на исполнительные устройства). Чтобы машинный код CISC-компьютеров из-за сложных инструкций не разрастался до огромного размера, машинные инструкции в большинстве этих архитектур имели неоднородную структуру (разное расположение и размеры кода операции и ее операндов) и сильно отличающуюся длину (в x86, например, длина инструкций варьируется от 1 до 15 байт). Еще одной проблемой стало то, что при сохранении приемлемой сложности процессора многие инструкции оказалось принципиально невозможно выполнить "чисто аппаратно", и поздние CISC-процессоры были вынуждены обзавестись специальными блоками, которые "на лету" заменяли некоторые сложные команды на последовательности более простых. В результате все CISC-процессоры оказались весьма трудоемкими в проектировании и изготовлении. Но что самое печальное, к моменту расцвета CISC-архитектур стало ясно, что все эти конструкции изобретались в общем-то зря - исследования программного обеспечения того времени, проведенные IBM, наглядно показали, что даже программисты, пишущие на ассемблере, все эти "сверхвозможности" почти никогда не использовали, а компиляторы языков высокого уровня - и не пытались использовать.

К началу восьмидесятых годов классические CISC полностью исчерпали себя. Расширять набор инструкций в рамках этого подхода дальше не имело смысла, наоборот - технологи столкнулись с тем, что из-за высокой сложности CISC-процессоров оказалось трудно наращивать их тактовую частоту, а из-за "тормознутости" оперативной памяти тех времен зашитые в память процессора расшифровки сложных инструкций зачастую работают медленнее, чем точно такие же цепочки команд, встречающиеся в основной программе. Короче говоря, стало очевидным, что CISC-процессоры нужно упрощать - и на свет появился RISC, Reduced Instruction Set Computer.

Шаг 2. RISC

Точно так же, как когда-то CISC-процессоры проектировались под нужды asm-программистов, RISC проектировался в расчете на типовой код, генерируемый компиляторами. Для начала разработчики свели к минимуму набор инструкций и к абсолютному минимуму - количество режимов адресации памяти; упаковав все, что осталось, в простой и удобный для декодирования регулярный машинный код. В частности, в классическом варианте RISC из инструкций, обращающихся к оперативной памяти, оставлены только две (Load - загрузить данные в регистр и Store - сохранить данные из регистра; так называемая Load/Store-архитектура), и нет ни одной инструкции вроде вычисления синуса, косинуса или квадратного корня (их можно реализовать "вручную"), не говоря уже о более сложных[Канонический пример - инструкция INDEX, выполнявшаяся на VAX медленнее, чем вручную написанный цикл, выполняющий ровно тот же объем работы]. Да что там синус с косинусом - в некоторых RISC-процессорах пытались отказаться даже от трудно реализуемого аппаратного умножения и деления! Правда, до таких крайностей ни один коммерческий RISC, к счастью, не дошел, но как минимум две попытки (ранние варианты MIPS и SPARC) предприняты были.

Второе важное усовершенствование RISC-процессоров, целиком вытекающее из Load/Store-архитектуры, - увеличение числа GPR (регистров общего назначения). Варианты, у которых меньше шестнадцати GPR, - большая редкость, причем почти все эти регистры полностью равноправны, что позволяет компилятору свободно распоряжаться ими, сохраняя большую часть промежуточных данных именно там, а не в стеке или оперативной памяти. В некоторых архитектурах, типа SPARC, "регистровость" возведена в абсолют, в некоторых - оставлена на разумном уровне; однако почти любой RISC-процессор обладает куда большим набором регистров, чем даже самый продвинутый CISC. Для сравнения: в классическом x86 IA-32 всего восемь регистров общего назначения, причем каждому из них приписано то или иное "специальное назначение" (скажем, в ESP хранится указатель на стек) затрудняющее или делающее невозможным его использование.

Среди прочих усовершенствований, внесенных в RISC, - такие нетривиальные идеи, как условные инструкции ARM или режимы работы команд. Например, некий модификатор в архитектуре PowerPC и некоторых других показывает, должна ли инструкция выставлять по результатам своего выполнения определенные флаги, которые потом может использовать инструкция условного перехода, или не должна. Это позволяет разнести в пространстве инструкцию, выполняющую вычисление условия, и инструкцию собственно условного перехода - что в конвейерных архитектурах зачастую позволяет процессору не "гадать", будет совершен переход или нет, а сразу достоверно это знать. В классическом CISC они почти не встречаются, поскольку на момент разработки соответствующих наборов инструкций ценность этих решений была сомнительной (они выйдут на сцену только в конвейеризированных процессорах).

"В чистом виде" идею "легкого" RISC-процессора можно встретить у компании ARM с ее невероятно простыми и тем не менее весьма эффективными 32-разрядными CPU. Но простота далеко не главный показатель в процессоре, и как самоцель подход RISC в целом себя, наверное, не оправдал бы - резко уменьшившаяся сложность CPU и сопутствующее увеличение тактовой частоты и ускорение исполнения инструкций хорошо уравновешивались возросшими размерами программ и сильно упавшей их вычислительной плотностью (средним количеством вычислений на единицу длины машинного кода). К счастью, в то же время, когда начались разработки первых коммерческих RISC-процессоров, был сделан следующий шаг – введён конвейер.

 

20 !Регистры. Обозначения. Регистр флагов (PSW).

Регистр — устройство, используемое для хранения n-разрядных двоичных данных и выполнения преобразований над ними.

Начиная с модели 80386 процессоры Intel предоставляют 16 основных регистров для пользовательских программ и ещё 11 регистров для работы с мультимедийными приложениями (MMX) и числами с плавающей точкой (FPU/NPX). Все команды так или иначе изменяют содержимое регистров. Как уже говорилось, обращаться к регистрам быстрее и удобнее, чем к памяти. Поэтому при программировании на языке Ассемблера регистры используются очень широко.

В этом разделе мы рассмотрим основные регистры процессоров Intel. Названия и состав/количество регистров для других процессоров могут отличаться. Итак, основные регистры процессоров Intel.

 

Таблица 2.1. Основные регистры процессора.

Название Разрядность Основное назначение
EAX Аккумулятор
EBX База
ECX Счётчик
EDX Регистр данных
EBP Указатель базы
ESP Указатель стека
ESI Индекс источника
EDI Индекс приёмника
EFLAGS Регистр флагов
EIP Указатель инструкции (команды)
CS Сегментный регистр
DS Сегментный регистр
ES Сегментный регистр
FS Сегментный регистр
GS Сегментный регистр
SS Сегментный регистр

Регистры EAX, EBX, ECX, EDX – это регистры общего назначения. Они имеют определённое назначение (так уж сложилось исторически), однако в них можно хранить любую информацию.

Регистры EBP, ESP, ESI, EDI – это также регистры общего назначения. Они имеют уже более конкретное назначение. В них также можно хранить пользовательские данные, но делать это нужно уже более осторожно, чтобы не получить «неожиданный» результат.

Регистр флагов и сегментные регистры требуют отдельного описания и будут более подробно рассмотрены далее.

Пока для вас здесь слишком много непонятных слов, но со временем всё прояснится.

Когда-то процессоры были 16-разрядными, и, соответственно, все их регистры были также 16-разрядными. Для совместимости со старыми программами, а также для удобства программирования некоторые регистры разделены на 2 или 4 «маленьких» регистра, у каждого из которых есть свои имена. В таблице 2.2 перечислены такие регистры.

Вот пример такого регистра.

Из этого следует, что вы можете написать в своей программе, например, такие команды:

MOV AX, 1

MOV EAX, 1

Обе команды поместят в регистр AX число 1. Разница будет заключаться только в том, что вторая команда обнулит старшие разряды регистра EAX, то есть после выполнения второй команды в регистре EAX будет число 1. А первая команда оставит в старших разрядах регистра EAX старые данные. И если там были данные, отличные от нуля, то после выполнения первой команды в регистре EAX будет какое-то число, но не 1. А вот в регистре AX будет число 1. Сложно? Ну, это пока... Со временем вы к таким вещам привыкните.

Мы пока не говорили о разрядах (битах). Эту тему мы обсудим в разделах, посвящённых системам счисления. А сейчас пока вам достаточно знать, что нулевой разряд (бит) – это младший бит. Он крайний справа. Старший бит – крайний слева. Номер старшего бита зависит от разрядности числа/регистра. Например, в 32-разрядном регистре старшим битом является 31-й бит (потому что отсчёт начинается с 0, а не с 1).

Ниже приведён список регистров общего назначения, которые можно поделить описанным выше способом и при этом к «половинкам» и «четвертинкам» этих регистров можно обращаться в программе как к отдельному регистру.

Таблица 2.2. «Делимые» регистры..

Регистр Старшие разряды Имена 16-ти и 8-ми битных регистров
31…16 15…8 7…0
EAX ... AX
AH AL
EBX ... BX
BH BL
ECX ... CX
CH CL
EDX ... DX
DH DL
ESI ... SI
EDI ... DI
EBP ... BP
ESP ... SP
EIP ... IP

 

 

Операции

Типичными являются следующие операции:

· приём слова в регистр (установка состояния);

· передача слова из регистра;

· поразрядные операции;

· сдвиг слова влево или вправо на заданное число разрядов;

· преобразование последовательного кода слова в параллельный и обратно;

· установка регистра в начальное состояние (сброс).

 

Регистр флагов

Регистр флагов – это очень важный регистр процессора, который используется при выполнении большинства команд. Регистр флагов носит название EFLAGS. Это 32-разрядный регистр. Однако старшие 16 разрядов используются при работе в защищённом режиме, и пока мы их рассматривать не будем. К младшим 16 разрядам этого регистра можно обращаться как к отдельному регистру с именем FLAGS. Именно этот регистр мы и рассмотрим в этом разделе.

Каждый бит в регистре FLAGS является флагом. Флаг – это один или несколько битов памяти, которые могут принимать двоичные значения (или комбинации значений) и характеризуют состояние какого-либо объекта. Обычно флаг может принимать одно из двух логических значений. Поскольку в нашем случае речь идёт о бите, то каждый флаг в регистре может принимать либо значение 0, либо значение 1. Флаги устанавливаются в 1 при определённых условиях, или установка флага в 1 изменяет поведение процессора. На рис. 2.4 показано, какие флаги находятся в разрядах регистра FLAGS.

Бит
Флаг NT IOPL OF DF IF TF SF ZF AF PF CF

Рис. 2.4. Регистр флагов FLAGS.

Флаг установлен, если значение соответствующего ему бита равно 1.

Флаг сброшен, если значение соответствующего ему бита равно 0.

Таблица 2.6. Описание флагов регистра FLAGS.

Бит Обозначение Название Описание
CF Carry Flag Флаг переноса. Устанавливается в 1, если результат предыдущей операции не уместился в приёмнике и произошёл перенос из старшего бита или если требуется заём (при вычитании). Иначе установлен в 0. Например, этот флаг будет установлен при переполнении, рассмотренном впредыдущем разделе.
- Зарезервирован.
PF Parity Flag Флаг чётности. Устанавливается в 1, если младший байт результата предыдущей команды содержит чётное количество битов, равных 1. Если количество единиц в младшем байте нечётное, то этот флаг равен 0.
- Зарезервирован.
AF Auxiliary Carry Flag Вспомогательный флаг переноса(или флаг полупереноса). Устанавливается в 1, если в результате предыдущей операции произошёл перенос (или заём) из третьего бита в четвёртый. Этот флаг используется автоматически командами двоично-десятичной коррекции.
- Зарезервирован.
ZF Zero Flag Флаг нуля. Устанавливается 1, если результат предыдущей команды равен 0.
SF Sign Flag Флаг знака. Этот флаг всегда равен старшему биту результата.
TF Trap Flag Флаг трассировки (или флаг ловушки). Он был предусмотрен для работы отладчиков в пошаговом выполнении, которые не используют защищённый режим. Если этот флаг установить в 1, то после выполнения каждой программной команды управление временно передаётся отладчику (вызывается прерывание 1).
IF Interrupt Enable Flag Флаг разрешения прерываний. Если сбросить этот флаг в 0, то процессор перестанет обрабатывать прерывания от внешних устройств. Обычно его сбрасывают на короткое время для выполнения критических участков программы.
DF Direction Flag Флаг направления. Контролирует поведение команд обработки строк. Если установлен в 1, то строки обрабатываются в сторону уменьшения адресов, если сброшен в 0, то наоборот.
OF Overflow Flag Флаг переполнения. Устанавливается в 1, если результат предыдущей арифметической операции над числами со знаком выходит за допустимые для них пределы. Например, если при сложении двух положительных чисел получается число со старшим битом, равным единице, то есть отрицательное. И наоборот.
12 13 IOPL I/O Privilege Level Уровень приоритета ввода/вывода.
NT Nested Task Флаг вложенности задач.
- Зарезервирован.

Значения некоторых флагов можно изменять напрямую с помощью специальных команд. Однако нет инструкций, которые бы позволяли обращаться к регистру флагов как к обычному регистру по имени. Некоторые флаги устанавливаются автоматически и предназначены только для чтения.

Сейчас вам будет понятно далеко не всё из того, что описано в таблице 2.4. Например, вы пока не знаете, что такое прерывания. Но всему своё время. Пока просто запомните страницу с описанием регистра флагов и возвращайтесь к ней по мере необходимости.

Системные флаги IOPL предназначены для управления операционной средой в защищённом режиме. Они не используются в прикладных программах.



2015-12-07 817 Обсуждений (0)
Многопроцессорные компьютерные системы (МПКС). Архитектура Google 0.00 из 5.00 0 оценок









Обсуждение в статье: Многопроцессорные компьютерные системы (МПКС). Архитектура Google

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (817)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.014 сек.)