Приложения двойных интегралов
Площадь плоской фигуры (области D) рассчитывается по формуле S = Масса тонкой плоской пластинки, являющейся областью D и с плотностью μ = μ(x; y), определяется следующим образом: m = Объем цилиндрического тела, построенного на основании D, ограниченного сверху соответствующим куском поверхности z = f(x; y) и стоящего на плоскости XOY, рассчитывается следующим образом: v =
Пример 2. Расставить пределы интегрирования в двойном интеграле, если область D ограничена линиями: y = x2, x = 2, y = 0 (рисунок 58). Решение Имеем
Пример 3. Изменить порядок интегрирования в интеграле J = Решение В рассматриваемом примере следует начинать с построения области интегрирования, поскольку интегралы заданы с указанием порядка интегрирования и пределов по соответствующим переменным. Напомним, что переменные пределы интегрирования внутреннего Пусть D = D1U D2 (рисунок 58). Тогда каждая прямая x = const, xÎ[–1; 2], пересекает множество D по отрезку с концами y = x2 – 1 и
Значит,
Заметим, что перемена порядка интегрирования в повторном интеграле иногда существенно упрощает его вычисление.
Пример 4.Вычислить интеграл Решение При каждом фиксированном значении y, y
Интегрируя теперь функцию φ(y) по y в пределах от y = 0до y = 1, получим
При вычислении интеграла
= Итак,
Рисунок 58 Рисунок 59
Тест 1. Связным на оси OX не является: 1) любое множество точек; 2) полуинтервал; 3) интервал; 4) вся ось OX; 5) отрезок.
Тест 2. Пусть фигура Ф – плоская область D = {(x; y): 1 ≤ x ≤ 4, 1) 3; 2) 5; 3) 15; 4) 5) 8.
Тест 3. Пусть фигура Ф – плоская область D = {(x; y):1 ≤ x ≤ 4, 1) 3; 2) 5; 3) 15; 4) 5) 8.
Тест 4. Интеграл по фигуре Ф существует, если на связной ограниченной фигуре Ф функция Ф(Р): 1) определена; 2) непрерывна; 3) имеет конечное число точек разрыва; 4) имеет только точки разрыва 1-го рода; 5) имеет бесконечное число точек разрыва.
Тест 5. Пусть фигура Ф – плоская область D = {(x; y):1 ≤ x ≤ 5, 1) 4; 2) 20; 3) 5; 4) 5) 35.
Тест 6. Пусть фигура Ф – плоская область D = {(x; y): 1 ≤ x ≤ 5, 1) 40; 2) 20; 3) 50; 4) 80; 5) 35.
Тест 7. Пусть Ф − фигура, ограниченная линиями y = x3, у =0, 1) 20,25; 2) 21; 3) 19,5; 4) 22; 5) 20,5.
Ответы на тестовые задания
Популярное: Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1676)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |