Теорема (достаточное условие экстремума)
Пусть функция у = f(x) дифференцируема в некоторой окрестности точки х0. если в точке х = х0 производная функции f(x) равна нулю и меняет знак при переходе через точку х0, то точка х0 является точкой экстремума, причём: 1) х0 ─ точка максимума, если знак меняется с плюса на минус; 2) х0 ─ точка минимума, если знак меняется с минуса на плюс.
Теорема (достаточное условие экстремума). Если в точке х = х0 первая производная дифференцируема в некоторой окрестности точки х0 функции у = f(x) равна нулю, а вторая производная отлична от нуля, то х0 является точкой экстремума, причём: 1) х0 ─ точка минимума, если f ''(x0) > 0; 2) х0 ─ точка максимума, если f ''(x0) < 0.
Пример.Найти экстремумы функции f(x) = Решение. Поскольку f '(x) = Исследуем знак второй производной f ''(x) = f ''( Следовательно, причём min f(x) = f(
Направления выпуклости, точки перегиба. Определение.График функции у=f(x) называется выпуклым внизв данном промежутке, если он целиком расположен выше касательной в его произвольной точке (рис.17.7). График функции у = f(x) называется выпуклым вверхв данном промежутке, если он целиком расположен ниже касательной в его произвольной точке (рис.17.8).
Теорема (достаточный признак выпуклости графика функции). Если вторая производная функции у = f(x) положительна в данном промежутке, то график функции является выпуклым вниз в этом промежутке; если же вторая производная отрицательна в данном промежутке, то график функции является выпуклым вверх в этом промежутке.
Пример.Найти интервалы выпуклости графика функции f(x) =
Определение. Точкой перегибаграфика функции у = f(x) называется такая его точка М0 (рис.17.9.), в которой меняется направление выпуклости. Теорема (достаточный признак существования точки перегиба). Если в точке х = х0 вторая производная функции у = f(x) обращается в нуль и меняет знак при переходе через неё, то М0(х0;f(x0)) ─ точка перегиба графика этой функции.
Например, в предыдущей задаче мы установили, что f ''(2) = 0 и f ''(x) меняет знак при переходе через эту точку. Следовательно, х = 2 ─ точка перегиба графика функции f(x) =
Асимптоты.
Если график функции сколь угодно близко приближается к прямой, то такую прямую называют асимптоты. Различают вертикальные и наклонные асимптоты.
Определение.Прямая х = Например, прямая х = 2 ─ вертикальная асимптота графика у = Определение.Предположим, что функция у = f(x) определена при сколь угодно больших (по модулю) значениях аргумента. Для определённости будем рассматривать положительные значения аргумента. Прямая у = называется наклонной асимптотойграфика функции у = f(x), если эта функция представима в виде f(x) =
где
Популярное: Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (374)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |