Тема 4.1.Первообразная. Неопределенный интеграл
Функция F(x) называется первообразной для функции f(x) на промежутке (a;b), если для всех xÎ(a;b) выполняется равенство F¢(x) = f(x). Например, для функции x2 первообразной будет функция x3/3. Если для F(x) установлено равенство dF(x) = f(x)dx, то F(x) ¾ первообразная для f(x), так как . Рассмотрим две теоремы, которые называются теоремами об общем виде всех первообразных данной функции.
Теорема 1. Если F(x) – первообразная для f(x) на (a;b), то F(x) + C, где C – число, тоже первообразная для f(x) на (a;b). Доказательство. (F + C)¢ = F¢ + C¢ = f + 0 = f По определению F + C ¾ первообразная для f. Прежде чем рассмотреть теорему 2, докажем две вспомогательные теоремы. Если функция g(x) постоянна на (a;b), то g¢(x) = 0. Доказательство. Так как g(x) = C, справедливы равенства: g¢(x) = C¢ = 0 (здесь, как и ниже, через C обозначено произвольно выбранное число). Если g¢(x) = 0 при всех xÎ(a;b), то g(x) = C на (a;b). Доказательство. Пусть g¢(x) = 0 во всех точках (a;b). Зафиксируем точку x1Î(a;b). Тогда для любой точки xÎ(a;b) по формуле Лагранжа имеем g(x) – g(x1) = g¢(x)(x – x1) Так как xÎ(x; x1), а точки x и x1 принадлежат промежутку (a;b), то g¢(x) = 0, откуда следует, что g(x) – g(x1)=0, то есть g(x) = g(x1)=const. Теорема 2. Если F(x) есть первообразная для f(x) на промежутке (a;b), а G(x) – другая первообразная для f(x) на (a;b), то G = F + C, где C – число. Доказательство. Возьмем производную от разности G – F: (G – F)¢ = G¢ – F¢ = Множество всех первообразных для функции f(x) на промежутке (a;b)называется неопределенным интегралом и обозначается òf(x)dx. Если F(x) – первообразная для f(x), то òf(x)dx = F(x) + C, где C – произвольное число (constanta). Вычисление неопределенного интеграла от заданной функции называется интегрированием. Из определения неопределенного интеграла следует, что каждой формуле дифференциального исчисления F¢(x) = f(x) соответствует формула òf(x) dx = F(x) + C интегрального исчисления. Отсюда получается таблица неопределенных интегралов. Но прежде отметим, как и в дифференциальном исчислении, буква u может обозначать как независимую переменную x (u=x), так и функцию от независимой переменной (u=u(x)).
1. (n≠-1). 2. (a >0, a≠1). 3. 4. 5. 6. 7. 8. 9.
10. 11. 12. 13. 13. 14. (a≠0). 15. (a≠0). 16. (|u| > |a|). 17. (|u|<|a|). Интегралы 1 – 17 называют табличными. Некоторые из приведенных выше формул таблицы интегралов, не имеющие аналога в таблице производных, проверяются дифференцированием их правых частей.
Неопределенный интеграл обладает следующими свойствами:
1. Производная из неопределенного интеграла равна подынтегральной функции, дифференциал неопределенного интеграла равен подынтегральному выражению: и . 2. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной: 3. Постоянный множитель а (а≠0) можно выносить за знак неопределенного интеграла:
4. Неопределенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от этих функций: 5. Если F(x) – первообразная функции f(x), то: 6 (инвариантность формул интегрирования). Любая формула интегрирования сохраняет свой вид, если переменную интегрирования заменить любой дифференцируемой функцией этой переменной: где u – дифференцируемая функция.
Все эти свойства непосредственно следуют из определения.
Популярное: Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (518)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |