Мегаобучалка Главная | О нас | Обратная связь


Тема 3.4. Производная по направлению



2015-12-07 885 Обсуждений (0)
Тема 3.4. Производная по направлению 0.00 из 5.00 0 оценок




 

Пусть в плоскости XOY расположена точка M0(x0,y0). Зададим произвольный угол a и рассмотрим множество точек на той же плоскости, координаты которых определяются из формул

x = x0 + t cosa, y = y0 + t sina. (3.4.1)

Здесь t ‑ параметр, который может быть равен любому числу. Из формул (3.4.1) следует:

(y - y0)/(x - x0) = tga

Это означает, что все точки M(x,y), координаты которых удовлетворяют равенствам (3.4.1), лежат на прямой, проходящей через точку M0(x0,y0) и составляющей угол a с осью OX. Каждому значению t соответствует единственная точка M(x,y), лежащая на этой прямой, причем согласно формуле (3.4.1) расстояние между точками M0(x0,y0) и M(x,y) равно t. Можно считать эту прямую числовой осью с положительным направлением, определяемым возрастанием параметра t. Обозначим положительное направление этой оси символом l.

Производной функции z = f(x,y) в точке M0(x0,y0)по направлению l называется число

. (3.4.2)

Производной функции по направлению можно дать геометрическую интерпретацию. Если через прямую l, определяемую формулами (3.4.1), провести вертикальную плоскость P (на самом деле в трехмерном пространстве уравнения (3.4.1) определяют эту самую плоскость), то эта плоскость пересечет поверхность-график функции z = f(x,y)вдоль

некоторой пространственной кривой L. Тангенс угла между горизонтальной плоскостью и касательной к этой кривой в точке M0(x0,y0)равен производной функции в этой точке по направлению l.

В любом курсе математического анализа доказывается, что производная по направлению, определяемая формулой (3.4.2), может быть представлена в виде

. (3.4.3) (3)

Заметим, что частная производная по x тоже является производной по направлению. Это направление определяется равенствами: cosa = 1; sina = 0. Аналогично частная производная по y — это производная по направлению, которое можно задать условиями cosa = 0; sina = 1.

Прежде, чем анализировать формулу (3.4.3), приведем некоторые понятия и факты из курса векторной алгебры. Пусть в плоскости с системой координат XOY задан направленный отрезок или (что то же самое) вектор, причем точка M0(x0,y0)является его начальной точкой, а M1(x1,y1)‑ конечной точкой. Определим координату вектора по оси OX как число, равное x1x0, а координату по оси , как число, равное y1y0. Если задать упорядоченную пару любых чисел a и b, то эти числа можно рассматривать как координаты некоторого вектора в плоскости XOY, причем длина этого вектора определена формулой

,

а тангенс угла наклона g вектора к оси OX определяется из формулы tgg = b/a (отметим, что зная величину tgg , а также знак любого из чисел a и b, мы можем определить угол g с точностью до 2p ).

Представление вектора в виде пары его координат будем записывать в виде или . Такое представление имеет одну характерную особенность: оно не определяет местоположение вектора на плоскости XOY. Чтобы его определить, нужно наряду с координатами вектора задавать, например, координаты его начальной точки или, как её можно назвать, точки приложения вектора.

Если заданы два вектора: и , то скалярным произве­дением этих векторов называется число (j‑ угол между векторами).

В любом курсе векторной алгебры доказывается, что скалярное произведение векторов и равно сумме произведений одноименных координат этих векторов:

= a1b1 + a2b2. (3.4.4)

Пусть в некоторой области G плоскости XOYзадана функция z = f(x,y), имеющая непрерывные частные производные по обоим аргументам. Градиентом или вектором-градиентом функции f(x,y) в точке (x,y) Î G называется вектор, который задается формулой

.

Функция f определяет для каждой точки области G вектор-градиент, исходящий из этой точки.

Возвратимся теперь к формуле (3.4.3). Ее правую часть мы можем рассматривать, как скалярное произведение векторов. Первый из них ‑ вектор-градиент функции z = f(x,y)в точке M0(x0,y0):

.

Второй – вектор . Это вектор, имеющий длину 1 и угол наклона к оси , равный a.

Теперь можно сделать вывод, что производная функции z = f(x,y)по направлению, определяемому углом a наклона к оси OX, в точке M0(x0,y0) может быть вычислена по формуле

. (3.4.5)

Здесь b ‑ угол между вектором и вектором , задающим направление, по которому берется производная. Здесь также учтено, что .

Из формулы (3.4.5) можно сделать очень важное заключение: производная по направлению от функции z = f(x,y) в точке M0(x0,y0)достигает наибольшего значения, если это направление совпадает с направлением вектора-градиента функции в рассматриваемой точке, так как cosb £1, и равенство достигается только если b = 0 (очевидно, что другие решения уравнения cosb = 1 нас в данном случае не инте­ресуют). Иначе можно сказать, что вектор-градиент функции в точке направлен в сторону наискорейшего возрастания функции в этой точке.

Кроме того из формулы (3.4.5) следует, что наибольшее значение производной по направлению в точке или наибольшее значение скорости возрастания функции в точке равно длине вектора-градиента функции в этой точке.

Пример. Требуется найти производную функции по направлению, составляющему угол в 60° с осью OX, в точке (1;3).

Найдем частные производные функции: Теперь можно определить градиент функции в точке (1;3): . Принимая во внимание равенство , воспользуемся формулой (3.4.4):

.

 



2015-12-07 885 Обсуждений (0)
Тема 3.4. Производная по направлению 0.00 из 5.00 0 оценок









Обсуждение в статье: Тема 3.4. Производная по направлению

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (885)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)