ГИДРОМЕХАНИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ТЕОРЕМЫ ОСТРОГРАДСКОГО - ГАУССА
Зафиксируем неподвижную в пространстве контрольную поверхность А, ограничивающую контрольный объём V. Сквозь эту поверхность протекает жидкость со скоростью
Обозначим модуль скорости
а также через модули векторов и угол между ними,
где un -нормальная к поверхности dА составляющая скорости. Таким образом,
Используя (3.4.3), запишем объёмный расход жидкости Q через поверхность dА:
Согласно теореме Остроградского - Гаусса имеем
Доказательство этой зависимости проведём на основе гидромеханических представлений. Зафиксируем в пространстве параллелепипед с бесконечно малыми рёбрами dx, dy, dz , поверхностью DiА и объёмом DiV = dxdydz. На каждой грани параллелепипеда значение un вследствие её малости постоянно и равно проекции скорости на координатную ось, к которой эта грань нормальна. Пусть проекции скорости имеют направления, указанные на рисунке. Расход жидкости
и объём жидкости, втекающей в него за то же самое время:
В результате имеем
или
где div u - дивергенция вектора скорости, которая определяет собой скалярную величину, определяемую равенством
Если жидкость несжимаемая, то из закона сохранения массы следует, что объём жидкости, втекающей в элементарный объём DiV равен объёму жидкости, вытекающей из него, так что
Поскольку объём не может быть равным 0, из уравнения (3.4. 6)следует, что в случае несжимаемой жидкости div u = 0. (3.4.9) Уравнение (2.4.9) называют уравнением несжимаемости жидкости. Оно справедливо в случае неустановившегося движения жидкости, когда Чтобы обобщить равенство (3.4.6) для произвольного объёма V , ограниченного произвольной поверхностью А (рис.3.9.) разобьём V на элементарные параллелепипеды. Для каждого из них можно записать равенство (3.4. 6).
Складывая все эти равенства, можно заметить, что в левой части каждый из интегралов по поверхности DiА состоит из шести слагаемых по числу граней параллелепипедов. При этом все слагаемые, которые относятся к поверхностям, разделяющим параллелепипеды, взаимно уничтожаются, так как каждая такая поверхность входит в поверхностные интегралы для двух соседних параллелепипедов, и тот объём жидкости, который вытекает из одного параллелепипеда, втекает в другой. Останутся только те части от интегралов
В правой части суммы всех уравнений (3.4. 6) по определению интеграла как предела суммы бесконечно малых слагаемых имеем
Таким образом, для объёма V произвольной формы справедливо равенство
Представив
что и составляет содержание теоремы Гаусса - Остроградского.
Популярное: Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (636)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |