Определённый интеграл (определение, геометрический смысл)
Пусть y=f(x), определена на отрезке [a;b]:
Сумма такого сида называется интегральной суммой функции y=f(x) на отрезке [a;b]. Обозначим в качестве Определние: если существует конечный предел интегральной суммы при l®0, то этот предел называется определёенным интегралом от функции y=f(x) по отрезку [a;b] и обозначается: Теорема Коши: Если функция y=f(x) непрерывна на отрезке [a;b], то определённый интеграл существует. Геометрический смысл: площадь криволинейной трапеции, ограниченной с верху функцией y=f(x), с низу осью Ох, и по бокам прямыми х=а, х=b.
Формула Ньютона-Лейбница. Если функция y=f(x) непрерывна на [a;b] и F(x) – какая либо первообразная функции на [a;b], т.е. F’(x)=f(x), то имеет место формула: Док-во: рассмотрим разность F(b)-F(a)=F(xn)-F(x0)=[F(x n)-F(x n-1)]+[F(x n-1)-F(x n-2)]+…+[F(x2)-F(x1)]+[F(x1)-F(x0)]. Разложим каждую скобку по формуле Лагранжа: F’(xn)(xn-x n-1)+ F’(x n-1)(x n-1- x n-2)+…+ F’(x2)(x2-x1)+ F’(x1)(x1-x0)=f(xn)Dxn+ f(xn-1)Dxn-1+…+ f(x2)Dx2+ f(x1)Dx1= По теореме Коши т.к. функция непрерывна, то определённый интеграл существует. Так
Основные свойства определённого интеграла 1) 4) 5) 53 Теорема о среднем: если функция y=f(x) непрерывна на отрезке [a;b], то
Интеграл с переменным верхним пределом Рассмотрим интеграл Теорема Барроу: Производная от непрерывной функции по переменному верхнему пределу существует и равна подынтегральной функции в точке, равной верхнему пределу, т.е.
Не собственный Интеграл с бесконечными пределами интегрирования Определение: пусть функция y=f(x) определена на промежутке [a;¥) интегрируема по любому промежутку внутри этого интервала, т.е. существует Замечание: если предел существует и конечен, то несобственный интеграл – сходящийся, если предел не существует или равен бесконечности, то интеграл – расходящийся.
Популярное: Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (625)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |