Мегаобучалка Главная | О нас | Обратная связь


ТЕМА № 4. Общее уравнения прямой. Виды уравнений прямой



2015-12-07 908 Обсуждений (0)
ТЕМА № 4. Общее уравнения прямой. Виды уравнений прямой 0.00 из 5.00 0 оценок




 

Уравнение прямой на плоскости.

 

Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно, т.е. А2 + В2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.

 

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

- C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

- А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

- В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

- В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

- А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

 

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

 

Уравнение прямой по точке и вектору нормали.

В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой , заданной уравнением Ах + Ву + С = 0.

 

Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

 

Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А.

Получаем: 3 – 2 + C = 0, следовательно С = -1.

Итого: искомое уравнение: 3х – у – 1 = 0.

 

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M1(x1, y1, z1) и M2(x2, y2, z2), тогда уравнение прямой, проходящей через эти точки:

 

 

Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.

На плоскости записанное выше уравнение прямой упрощается:

если х1 ¹ х2 и х = х1, еслих1 = х2.

Дробь = k называется угловым коэффициентом прямой.

 

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

 

Применяя записанную выше формулу, получаем:

 

Уравнение прямой по точке и угловому коэффициенту.

 

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

 

 

и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k.

 

 

Уравнение прямой по точке и направляющему вектору.

 

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание прямой через точку и направляющий вектор прямой.

Каждый ненулевой вектор (a1, a2), компоненты которого удовлетворяют условию Аa1 + Вa2 = 0 называется направляющим вектором прямой Ах + Ву + С = 0.

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

 

Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением, коэффициенты должны удовлетворять условиям:

 

1×A + (-1)×B = 0, т.е. А = В.

 

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C/A = 0.

 

при х = 1, у = 2 получаем С/A = -3, т.е. искомое уравнение:

 

х + у - 3 = 0

 

 

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или

, где

 

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

 

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

 

С = 1, , а = -1, b = 1.

 

Нормальное уравнение прямой.

 

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем, то получим

 

xcosj + ysinj - p = 0 –нормальное уравнение прямой.

 

Знак ± нормирующего множителя надо выбирать так, чтобы m×С < 0.

р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

 

Угол между прямыми на плоскости.

Если заданы две прямые y = k1x + b1, y = k2x + b2, то острый угол между этими прямыми будет определяться как

 

.

Две прямые параллельны, если k1 = k2.

Две прямые перпендикулярны, если k1 = -1/k2.

 

Теорема. Прямые Ах + Ву + С = 0 и А1х + В1у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = lА, В1 = lВ. Если еще и С1 = lС, то прямые совпадают.

Координаты точки пересечения двух прямых находятся как решение системы уравнений этих прямых.

Уравнение прямой, проходящей через данную точку

перпендикулярно данной прямой.

 

Определение. Прямая, проходящая через точку М11, у1) и перпендикулярная к прямой

у = kx + b представляется уравнением:

 

Расстояние от точки до прямой.

Теорема. Если задана точка М(х0, у0), то расстояние до прямой Ах + Ву + С =0 определяется как



2015-12-07 908 Обсуждений (0)
ТЕМА № 4. Общее уравнения прямой. Виды уравнений прямой 0.00 из 5.00 0 оценок









Обсуждение в статье: ТЕМА № 4. Общее уравнения прямой. Виды уравнений прямой

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (908)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)