Определение скорости выхода пара из каналов направляющего аппарата и рабочей решетки
Пусть давление и температура пара перед решеткой соответственно равны Р0и t0. При анализе процессов течения пара в паровых турбинах широко используются тепловые диаграммы водяного пара и, в частности, диаграмма h–s. Это связано с тем, что уравнение состояния водяного пара в достаточно простом виде отсутствует. Обращаясь к диаграмме h–s (рис.12) на пересечении изобары Р0 и изотермы t0 можно найти точку А0, характеризующую состояние пара перед решеткой и снять с диаграммы энтальпию пара h0. На входе в направляющий аппарат пар уже обладает некоторой кинетической энергией Итак, поток пара, состояние которого определяется точкой А0 диаграммы h–s, со скоростью Такой процесс течения пара (без трения) условно будем называть теоретическим, а параметры этого процесса будем дополнительно обозначать индексом «t». Пусть давление за решеткой равно Рd. Проведя из точки А0 адиабату до пересечения с изобарой Рd (рис.12) можно на диаграмме h–s найти точку Аdt, определяющую состояние пара в конце теоретического процесса и снять в этой точке энтальпию hdt. Теоретическую скорость пара на выходе из направляющего аппарата обозначим C1t. Тогда уравнение энергии для входного и выходного сечений решетки запишется в виде:
Это уравнение показывает, что при отсутствии теплообмена полная удельная энергия потока, складывающаяся из кинетической Разность энтальпий на входном и выходном сечениях решетки определяет тот запас потенциальной энергии, который может быть преобразован в направляющем аппарате в кинетическую энергию. Эту разность будем обозначать had и называть адиабатным теплоперепадом в направляющем аппарате (в соплах): had=h0-hdt (3.2) Тогда непосредственно из уравнения энергии (2.2.1) получим выражение для теоретической скорости выхода пара из решетки:
Таким образом, на выходе из направляющего аппарата ступени поток пара приобретает скорость С1t за счет освобождения некоторой части потенциальной энергии had и за счет скорости на входе С2(к-1). Сумму входной кинетической энергии и адиабатного теплоперепада обозначают h'ad и называют располагаемым теплоперепадом:
Тогда формула для определения теоретической скорости истечения запишется в виде:
Теплоперепады hadи h'ad могут быть показаны на диаграмме h-s (рис.12). Формулы (2.2.3) и (2.2.5) определяют теоретическую скорость истечения. Однако на практике приходится иметь дело с реальным потоком пара, в котором действуют силы вязкости. Поэтому действительная скорость истечения пара С1 будет несколько меньше теоретической. Для характеристики реального процесса течения пара в теории турбин вводится понятие коэффициента скорости φ, который определяется отношением действительной скорости истечения к теоретической:
Для определения величины коэффициента скорости φ следовало бы рассчитать течение в пограничном слое на поверхности лопаток и вычислить сопротивление трения и вихревое сопротивление решетки. В принципе такая задача может быть решена. Однако на практике величина коэффициента φ определяется опытным путем при продувках решеток турбинных лопаток на специальных газодинамических стендах. Для современных турбинных профилей направляющих аппаратов коэффициент φ обычно имеет порядок 0,95-0,97. Таким образом, для определения действительной скорости выхода пара из направляющего аппарата ступени получим формулы:
или
Скорость входа пара в направляющий аппарат С2(к-1) часто бывает пренебрежимо мала. Тогда адиабатный и располагаемый теплоперепады равны. В этом случае формула для определения скорости истечения записывается в виде
Поставленная задача решена – мы определили скорость выхода пара из направляющего аппарата ступени. Для того чтобы, полностью характеризовать течение в направляющем аппарате необходимо определить состояние пара на выходе из решетки. С этой целью вводится понятие о потерях кинетической энергии при течении пара через решетку. Если бы трение и другие сопротивления отсутствовали, то скорость пара на выходе из решетки была бы равна C1t, а его удельная кинетическая энергия составляла бы В реальном потоке удельная кинетическая энергия на выходе из решетки составляет Потерей кинетической энергии в направляющем аппарате называется разность между располагаемой и действительной кинетической энергией на выходе из решетки. Иногда эту величину называют просто «потери энергии», опуская слово «кинетической». Применяя термин «потери энергии» следует иметь в виду, что речь идет именно о потерях кинетической энергии, и что эта энергия не исчезает безвозвратно, а приводит к повышению энтальпии пара. Потери кинетической энергии в направляющем аппарате (в соплах) обозначаются через qd. Согласно данному выше определению эти потери составляют:
Для характеристики относительной величины потерь энергии вводится понятие коэффициента потерьςd, который определяется отношением потерянной кинетической энергии к располагаемой кинетической энергии:
С учетом определения коэффициента ςd, выражение для потерь энергии может быть записано в виде:
или
Теперь можно определить действительное состояние пара за решеткой. Для теоретического процесса это состояние характеризовалось точкой Аdt диаграммы h-s, причем энтальпия пара в этой точке составляла hdt. В реальном процессе потерянная кинетическая энергия qd расходуется на преодоление трения и прочих сопротивлений решетки, что приводит к росту энтальпии пара. Поэтому действительная энтальпия пара за решеткой hd будет равна: hd =hdt+qd (3.14) На диаграмме h-s (рис.12) энтальпию hd легко найти, отложив вверх от точки Аdt потерю qd. Точка Аd, определяющая действительное состояние пара за направляющим аппаратом определяется пересечением изобары Рd и линии постоянной энтальпии hd=соnst. В точке Аd диаграммы h-s можно снять необходимые параметры пара, и в частности, удельный объем Vd. Таким образом, действительный процесс течения пара в направляющем аппарате изобразится на диаграмме h-s некоторой политропой АоАd (теоретический процесс – адиабата АоАdt), которая условно проводится прямой.
Популярное: Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (708)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |