Мегаобучалка Главная | О нас | Обратная связь


Регуляция митоза, вопрос о пусковом механизме митоза



2015-12-14 1938 Обсуждений (0)
Регуляция митоза, вопрос о пусковом механизме митоза 0.00 из 5.00 0 оценок




Факторы, побуждающие клетку к митозу точно не известны. Но полагают, что большую роль играет фактор соотношения объемов ядра и цитоплазмы (ядерно-плазменное соотношение). По некоторым данным, отмирающие клетки продуцируют вещества, способные стимулировать деление клетки. Белковые факторы, отвечающие за переход в фазу М, первоначально были идентифицированы на основе экспериментов по слиянию клеток. Слияние клетки, находящейся в любой стадии клеточного цикла, с клеткой находящейся в М фазе, приводит к вхождению ядра первой клетки в М фазу. Это означает, что в клетке находящейся в М фазе существует цитоплазматический фактор способный активировать М фазу. Позднее этот фактор был вторично обнаружен в экспериментах по переносу цитоплазмы между ооцитами лягушки, находящимися на различных стадиях развития, и был назван "фактором созревания" MPF (maturation promoting factor). Дальнейшее изучение MPF показало, что этот белковый комплекс детерминирует все события М-фазы. На рисунке показано, что распад ядерной мембраны, конденсация хромосом, сборка веретена, цитокинез регулируются MPF.

Митоз тормозится высокой температурой, высокими дозами ионизирующей радиации, действием растительных ядов. Один из таких ядов называется колхицин.
С его помощью можно остановить митоз на стадии метафазной пластинки, что позволяет подсчитать число хромосом и дать каждой из них индивидуальную характеристику, т. е. провести кариотипирование.

Амитоз (от греч. а – отриц. частица и митоз) -прямоеделение интерфазного ядра путем перешнуровывания без преобразования хромосом. При амитозе не происходит равномерное расхождение хроматид к полюсам. И это деление не обеспечивает образование генетически равноценных ядер и клеток. По сравнению с митозом амитоз более кратковременный и экономичный процесс. Амитотическое деление может осуществляться несколькими способами. Наиболее распространенный тип амитоза – это перешнуровывание ядра на две части. Этот процесс начинается с разделения ядрышка. Перетяжка углубляется, и ядро разделяется надвое. После этого начинается разделение цитоплазмы, однако это происходит не всегда. Если амитоз ограничивается только делением ядра, то это приводит к образованию дву- и многоядерных клеток. При амитозе может также происходить почкование и фрагментация ядер.

Клетка, претерпевшая амитоз, в последующем не способна вступить в нормальный митотический цикл.

Амитоз встречается в клетках различных тканей растений и животных. У растений амитотическое деление довольно часто встречается в эндосперме, в специализирующихся клетках корешков и в клетках запасающих тканей. Амитоз также наблюдается в высокоспециализированных клетках с ослабленной жизнеспособностью или дегенерирующих, при различных патологических процессах, таких как злокачественный рост, воспаление и т. п.

Кроме митоза в клетках некоторых органов растений и животных встречаются и другие типы деления: эндомитоз и политения. При эндомитозе не формируется веретено деления и сохраняется ядерная оболочка, вследствие чего образуются полиплоидные клетки с увеличенным числом хромосом. Политения рассматривается как частный случай эндомитоза, поскольку после многократной репликации ДНК все хроматиновые нити (хроматиды) плотно прилегают друг к другу и соединены общей центромерой, образуя гигантские политенные хромосомы.

 

Мейоз и его значение

При образовании гамет, т.е. половых клеток – сперматозоидов и яйцеклеток – происходит деление клетки, называемое мейозом. Мейоз (от греч.meiosis – уменьшение) - это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом и переход клеток из диплоидного состояния 2n в гаплоидное n. Этот вид деления был впервые описан В. Флемингом в 1882 г. у животных и Э. Страсбургером в 1888 г. у растений. Мейоз включает два последовательных деления: первое (редукционное) и второе (эквационное). В каждом делении выделяют 4 фазы: профаза, метафаза, анафаза, телофаза. Все фазы первого мейотического деления обозначают цифрой I, а все фазы второго деления — цифрой II. Мейозу предшествует интерфаза, в процессе которой происходит удвоение ДНК и клетки вступают в мейоз с хромосомным набором 2n4с(n — хромосомы, с — хроматиды).

Профаза I мейоза отличается значительной продолжительностью и сложностью. Ее условно разделяют на пять последовательных стадий: лептотена, зиготена, пахитена, диплотена и диакинез.Каждая из этих стадий обладает своими отличительными особенностями.

Лептотена (стадия тонких нитей).Для этой стадии характерно наличие тонких и длинных хромосомных нитей. Число хромосомных нитей соответствует диплоидному числу хромосом. Каждая хромосомная нить состоит из двух хроматид, соединенных общим участком — центромерой. Хроматиды очень близко сближены, и поэтому каждая хромосома кажется одиночной.

Зиготена (стадия соединения нитей).Моментом перехода лептотены в зиготену считают начало синапса. Синапс – процесс тесной конъюгации двух гомологичных хромосом. Подобная конъюгация отличается высокой точностью. Конъюгация часто начинается с того, что гомологичные концы двух хромосом сближаются на ядерной мембране, а затем процесс соединения гомологов распространяется вдоль хромосом от обоих концов. В других случаях синапс может начаться во внутренних участках хромосом и продолжаться по направлению к их концам. В результате каждый ген входит с соприкосновение с гомологичным ему геном той же хромосомы. Такой тесный контакт между гомологичными участками хроматид обеспечивается благодаря специализированной структуре – синаптонемальному комплексу. Синаптонемальный комплекс представляет собой длинное белковое образование, напоминающее веревочную лестницу, к противоположным сторонам которого плотно прилегают два гомолога.

Пахитена (стадия толстых нитей). Как только завершается синапс по всей длине хромосом, клетки вступают в стадию пахитены, на которой они могут оставаться несколько суток. Соединение гомологов становится столь тесным, что уже трудно отличить две отдельные хромосомы. Однако это пары хромосом, которые называют бивалентами. В этой стадии происходит кроссинговер, или перекрест хромосом.

Кроссинговер (от англ. crossingover - пересечение, скрещивание) - взаимный обмен гомологичными участками гомологичных хромосом. В результате кроссинговера хромосомы несут комбинации генов в новом сочетании. Например, ребенок родителей, один из которых имеет темные волосы и карие глаза, а другой - светловолосый и голубоглазый, может иметь карие глаза и светлые волосы.

Диплотена (стадия двойных нитей). Стадия диплотены начинается с разделения конъюгировавших хромосом. Процесс отталкивания начинается в области центромеры и распространяется к концам. В это время хорошо видно, что бивалент состоит из двух хромосом (откуда и название стадии «двойные нити»), и что каждая хромосома состоит из двух хроматид. Всего в биваленте структурно обособлены четыре хроматиды, поэтому бивалент называют тетрадой.В это же время становится видно, что тела двух гомологичных хромосом переплетаются. Фигуры перекрещенных хромосом напоминают греческую букву «хи» (χ), поэтому места перекреста назвали хиазмами. Наличие хиазм связано с произошедшим кроссинговером. По мере прохождения этой стадии хромосомы как бы раскручиваются, происходит перемещение хиазм от центра к концам хромосом (терминализация хиазм). Это обеспечивает возможность движения хромосом к полюсам в анафазе.

Диакинез.Диплотена незаметно переходит в диакинез, завершающую стадию профазы I. На этой стадии биваленты, которые заполняли весь объем ядра, начинают перемещаться ближе к ядерной оболочке. К концу диакинеза контакт между хроматидами сохраняется на одном или обоих концах. Исчезновение оболочки ядра и ядрышек, а также окончательное формирование веретена деления завершают профазу I.

Метафаза I. В метафазе I биваленты располагаются в экваториальной плоскости клетки. Нити веретена прикрепляются к центромерам гомологичных хромосом.

Анафаза I. В анафазе I к полюсам отходят не хроматиды, как при митозе, а гомологичные хромосомы из каждого бивалента. В этом принципиальное отличие мейоза от митоза. При этом расхождение гомологичных хромосом носит случайный характер.

Телофаза I очень короткая, в процессе ее идет формирование новых ядер. Хромосомы деконденсируются и деспирализуются. Так заканчивается редукционное деление, и клетка переходит в короткую интерфазу, после которой наступает второе мейотическое деление. От обычной интерфазы эта интерфаза отличается тем, что в ней не происходит синтеза ДНК и дупликации хромосом, хотя синтез РНК, белка и других веществ может происходить.

Цитокинез у многих организмов происходит не сразу после деления ядер, так что в одной клетке лежат два ядра более мелких, чем исходное.

Затем наступает второе деление мейоза, сходное с обычным митозом.

Профаза II очень короткая. Она характеризуется спирализацией хромосом, исчезновением ядерной оболочки, ядрышка, формированием веретена деления.

Метафаза II. Хромосомы располагаютсяв экваториальной плоскости. Центромеры, соединяющие пары хроматид, делятся (в первый и единственный раз в течение мейоза), что свидетельствует о начале анафазы II.

В анафазе II хроматиды расходятся и быстро увлекаются нитями веретена от плоскости экватора к противоположным полюсам.

Телофаза II. Для этой стадии характерно деспирализация хромосом, образование ядер, цитокинез. В итоге из двух клеток мейоза I в телофазе II образуются четыре клетки с гаплоидным числом хромосом. Описанный процесс типичен для образования мужских половых клеток. Образование женских половых клеток идет аналогично, но при овогенезе развивается лишь одна яйцеклетка, а три мелких направительных (редукционных) тельца впоследствии отмирают. Направительные тельца несут полноценные хромосомные наборы, но практически лишены цитоплазмы и вскоре погибают. Биологический смысл образования этих телец заключается в необходимости сохранения в цитоплазме яйцеклетки максимального количества желтка, потребного для развития будущего зародыша.

Таким образом, для мейоза характерно два деления: в ходе первого расходятся хромосомы, в ходе второго - хроматиды.

Разновидности мейоза.В зависимости от места в жизненном цикле организма выделяют три основных типа мейоза: зиготный, или начальный, споровый, или промежуточный, гаметный, или конечный. Зиготный тип происходит в зиготе сразу после оплодотворения и приводит к образованию гаплоидного мицелия или таллома, а затем спор и гамет. Этот тип характерен для многих грибов и водорослей. У высших растений наблюдается споровый тип мейоза, который проходит перед цветением и приводит к образованию гаплоидного гаметофита. Позднее в гаметофите образуются гаметы. Для всех многоклеточных животных и ряда низших растений свойственен гаметный, или конечный, тип мейоза. Протекает он в половых органах и приводит к образованию гамет.

Биологическое значение мейоза заключается в том, что:

· поддерживается постоянный кариотип в ряду поколений организмов, размножающихся половым путем (после оплодотворения образуется зигота, содержащая характерный для данного вида набор хромосом).

· обеспечивается перекомбинация генетического материала как на уровне целых хромосом (новые комбинации хромосом), так и на уровне участков хромосом.

 



2015-12-14 1938 Обсуждений (0)
Регуляция митоза, вопрос о пусковом механизме митоза 0.00 из 5.00 0 оценок









Обсуждение в статье: Регуляция митоза, вопрос о пусковом механизме митоза

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1938)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)