Мегаобучалка Главная | О нас | Обратная связь


Дигибридные скрещивания. Тригибридное скрещивание



2015-12-14 1879 Обсуждений (0)
Дигибридные скрещивания. Тригибридное скрещивание 0.00 из 5.00 0 оценок




Г. де Фриз (1900) предложил дигибридами называть организмы, полученные от скрещивания особей, отличающихся одновременно двумя парами альтернативных признаков; если признаков три пары - тригибридами; многими признаками - полигибридами.

Рассмотрим схему дигибридного скрещивания.

 

В рассматриваемом примере признаки наследуются независимо и распределе-ние генов связано с независимым расхождением двух пар гомологичных хромосом в мейозе.

Дигетерозиготные растения F1 образуют 22 = 4 типов гамет.

При сочетании гамет при дигибридном скрещивании получается 42 = 16 комбинаций.

В F2 по каждому признаку наследование происходит независимо от другого признака - третий закон Менделя - закон независимого комбинирования признаков.

Расщепление по каждой паре признаков в отдельности происходит так же, как и при моногибридном скрещивании в отношении 3 : 1.

По фенотипу в F2 расщепление происходит на 22 = 4 класса в соотношении:

(3А -: 1аа) х (3В - : 1вв) =

9А - В - : 3А - вв : 3 ааВ - : 1 аавв

жёлтых жёлтых зелёных зелёных

гладких морщин. гладких морщин.

По генотипу в F2 расщепление происходит на 32 = 9 классов в соотношении:

(1АА : 2Аа : 1аа) х (1ВВ : 2Вв : 1вв) =

1ААВВ : 2ААВв : 1ААвв : 2АаВВ : 4АаВв : 2Аавв : 1ааВВ : 2ааВв : 1аавв.

Т. о., коэффициент гомозиготного генотипа - 1 (ААВВ, ААвв, ааВВ, аавв), гетерозиготного генотипа по одному гену - 2 (ААВв, АаВВ, Аавв, ааВв), гетерозиготного генотипа по двум генам - 4 (АаВв).

Анализ полигибридных скрещиваний производится также, как и дигибридных, однако с каждым увеличением числа признаков возрастает число комбинаций гамет.

Если у дигибрида, как мы видели, получается 16 комбинаций, у тригибрида их уже 64, а у тетрагибрида - 256. Классическое расщепление 9:3:3:1 в дигибридном скрещивании получается не всегда, для этого необходимо соблюдение многих условий.

Следует иметь ввиду, что в полигибридных расщеплениях также может быть неполное доминирование, приводящее к серьезным изменениям в частотах встречаемости разных фенотипических классов.

Литература

1. Айала, Ф. Современная генетика / Ф. Айала, Дж. Кайгер. – М.: Мир, 1987. – Т.1. – 295 с; Т.2. – 368 с; Т.3.

2. Алиханян, С. И. Общая генетика / С. И. Алиханян, А. П. Акифьев,
Л. С. Чернин. – М.: Высш. шк., 1985.

3. Бокуть, С. Б. Молекулярная биология: молекулярные механизмы хранениия, воспроизведения и реализации генетической информации / С. Б. Бокуть, Н. В. Герасимович, А. А. Милютин. – Мн.:Высш. шк., 2005.

4. Дубинин, Н. П. Общая генетика / Н. П. Дубинин. – М.: Наука, 1986.

5. Жимулев, И. Ф. Общая и молекулярная генетика / И. Ф. Жимулев. – Новосибирск: Изд-во Новосибирского ун-та, 2002.

6. Жученко, А. А. Генетика / А. А Жученко, Ю. Л. Гужов,
В. А. Пухальский. – М.: Колос, 2004.

 


ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ ПРИЗНАКОВ

 

Лекция 7

Взаимодействие генов

Цель лекции:ознакомить учащихся с типами взаимодействия неаллельных генов, познакомить с генотипом как целостной, исторически сложившейся системе аллельных и неаллельных генных взаимодействий, изучить влияние факторов внешней среды на реализацию генотипа, изучить явления пенетрантности и экрессивности, норму реакции, плейотропный эффект гена.

План лекции:

1. Типы взаимодействия неаллельных генов: комплементарность, эпистаз, полимерия. Гены – модификаторы.

2. Пенетрантность и экрессивность. Норма реакции. Плейотропный эффект гена.

1. Типы взаимодействия неаллельных генов: комплементарность, эпистаз, полимерия. Гены – модификаторы.

Фенотип организма формируется под влиянием большого количества генов, а также в результате их взаимодействия.

Все многообразие межгенных взаимодействий можно разделить на две группы: взаимодействие аллельных и неаллельных генов.

1. Аллельные гены находятся в идентичных локусах гомологичных хромосом, и взаимодействие между ними проявляется в форме полного, неполного доминирования и кодоминирования.

2. Неаллельные гены локализованы в разных парах гомологичных хромосом или в одной паре гомологичных хромосом, но в разных ее локусах.

Выделяют три основных типа взаимодействия неаллельных генов.

1. Комплементарность – тип неаллельного взаимодействия генов, при котором сочетание в генотипе доминантных аллелей обоих генов обуславливает появление нового признака.

Впервые подобный тип взаимодействия был изучен У. Бетсоном и Р. Пеннетом у душистого горошка.

При скрещивании двух линий с белыми цветками в F1 дигетерозиготные растения АаВв имели пурпурные цветки, а в F2 было получено 9/16 (A-B-) растений с пурпурными цветками, и 7/16 (3/16 A–bb+ 3/16 aaB– + 1/16 aabb) с белыми, т.е. расщепление составило:

· 9:7.

Наследование окраски цветков у Lathyrus odoratus при взаимодействии двух пар генов

Таким образом, взаимодействие доминантных генов А+В обусловливает пурпурную окраску цветков.

При комплементарном взаимодействии генов возможны отклонения от стандартной формулы расщепления по фенотипу (9:3:3:1) при дигибридном скрещивании, а именно:

· 9:6:1

Вариант такого взаимодействия генов характерен для наследования формы плодов у тыквы.

Наследование формы плода у Cucurbita pepo при взаимодействии двух пар генов

У тыквы наблюдается три разновидности плодов: дисковидная, сферическая и удлиненная, причем сферическая форма является рецессивной по отношению к дисковидной.

При скрещивании двух сортов тыквы со сферическими плодами получаются растения F1 с дисковидной формой плодов. В потомстве этих растений в F2 появляются три фенотипических класса в соотношении 9/16 с дисковидными плодами (А–В–), 6/16 – со сферическими (3/16 A–bb+3/16 aaB–) и 1/16 с удлиненными (aabb). Это свидетельствует о том, что каждый из доминантных неаллельных генов А и В детерминирует сходный фенотип – сферическую форму плодов, взаимодействие их доминантных аллелей в генотипе обусловливает дисковидную форму плодов, а взаимодействие рецессивных аллелей - удлиненную форму.

· 9:3:3:1

Подобное расщепление по фенотипу в F2 наблюдается при наследовании окраски глаз у дрозофилы.

При скрещивании линий дрозофилы с ярко-красными и коричневыми глазами получены гибриды F1 с красными глазами.

Наследование окраски глаз у Drosophila при взаимодействии двух пар генов

В F2 присутствие доминантных генов А и В у 9/16 особей приводит к формированию красной окраски глаз. Присутствие гена А в гомо- или гетерозиготном состоянии при рецессивном b дает ярко-красную окраску у 3/16 особей, а гены aaB– у 3/16 потомства дают коричневую окраску. Гомозиготы по обоим рецессивным генам aabb (1/16) имеют новый фенотип – белую окраску глаз.

Итак, взаимодействие доминантных генов в генотипе изменяет окраску глаз. Каждый из комплементарных доминантных генов имеет собственное фенотипическое проявление, а двойная рецессивная гомозигота отличается от них по фенотипу.

· 9:3:4

Вариант подобного взаимодействия комплементарных генов можно рассмотреть на примере наследования окраски луковицы. У лука скрещивание формы, имеющей неокрашенную (белую) луковицу, с формой, имеющей желтую луковицу, дает в F1 растения с красной луковицей. А в F2 появляются растения с красной (9/16), желтой (13/16) и белой (4/16) луковицами:

P: ccRR × CCrr

Белая Желтая

Гаметы: cR Cr

F1 CcRr

Гаметы: CR, Cr, cR, cr

F2 9/16 C–R– : 3/16 C–rr : 4/16 (3/16 ccR– + 1/16 ccrr)

Красная Желтая Белая

Красная окраска луковицы обусловлена наличием двух доминантных генов (С–R–). Доминантный аллель Сдетерминирует желтую окраску луковицы, а рецессивный аллель с– белую. Доминантный ген R не имеет собственного фенотипического проявления и объединяется по фенотипу с рецессивной гомозиготой гена с, аллель r не влияет на проявление окраски.

Таким образом, комплементарными являются гены, которые при совместном действии в генотипе в гомо- и гетерозиготном состоянии (А–В–) обусловливают развитие нового признака. Действие каждого гена в отдельности (А–вв или ааВ–) воспроизводит признак лишь одного из скрещиваемых родителей.

Расщепление в F2 по фенотипу может быть разнообразным: 9:7, 9:6:1, 9:3:3:1, 9:3:4.

2. Эпистаз – тип неаллельного взаимодействия генов, при котором ген одной аллельной пары подавляет действие генов другой пары.

Гены, подавляющие проявление других генов, называются супрессорами, а подавляемые гены – гипостатичными. Выделяют два типа эпистаза: доминантный и рецессивный. При доминантном эпистазе – супрессии ингибирующее действие оказывает доминантный аллель: А>B.

· 13 : 3

Окраска оперения кур определяется двумя генами, взаимодействующими по типу доминантного эпистаза.

Ген С обусловливает окрашенное оперение, ген I подавляет проявление пигмента(I>C); ген с детерминирует белое оперение, ген i на окраску не влияет.

При скрещивании куриц породы леггорн (ССII) с петухами породы белый виандот (ссii) в F2 13/16 кур с белым оперением и 3/16 с окрашенным оперением, у которых нормальный синтез пигмента и проявление гена С не ингибируется эпистатичным геном I.

 



2015-12-14 1879 Обсуждений (0)
Дигибридные скрещивания. Тригибридное скрещивание 0.00 из 5.00 0 оценок









Обсуждение в статье: Дигибридные скрещивания. Тригибридное скрещивание

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1879)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)