Мегаобучалка Главная | О нас | Обратная связь  


Элементы математической статистики




Представление данных (таблицы, диаграммы, графики), генеральная совокупность, выборка, среднее арифметическое, медиана. Понятие о задачах математической статистики.

Решение практических задач с применением вероятностных методов.

 

ГЕОМЕТРИЯ

Прямые и плоскости в пространстве

Взаимное расположение двух прямых в пространстве. Параллельность прямой и плоскости. Параллельность плоскостей. Перпендикулярность прямой и плоскости. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол. Угол между плоскостями. Перпендикулярность двух плоскостей.

Геометрические преобразования пространства: параллельный перенос, симметрия относительно плоскости.

Параллельное проектирование. Площадь ортогональной проекции. Изображение пространственных фигур.

Многогранники

Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида. Правильная пирамида. Усеченная пирамида. Тетраэдр.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде.

Сечения куба, призмы и пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Тела и поверхности вращения

Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения, параллельные основанию.

Шар и сфера, их сечения. Касательная плоскость к сфере.

Измерения в геометрии

Объем и его измерение. Интегральная формула объема.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы. Подобие тел. Отношения площадей поверхностей и объемов подобных тел.

Координаты и векторы

Прямоугольная (декартова) система координат в пространстве. Формула расстояния между двумя точками. Уравнения сферы, плоскости и прямой.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Разложение вектора по направлениям. Угол между двумя векторами. Проекция вектора на ось. Координаты вектора. Скалярное произведение векторов.

Использование координат и векторов при решении математических и прикладных задач.


 

ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОБУЧЕНИЯ

В результате изучения учебной дисциплины «Математика» обучающийся должен

знать/понимать: *

ü значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

ü значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

ü универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

ü вероятностный характер различных процессов окружающего мира.

 

* Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.

АЛГЕБРА

уметь:

ü выполнять арифметические действия над числами, сочетая устные и письменные приемы; находить приближенные значения величин и погрешности вычислений (абсолютная и относительная); сравнивать числовые выражения;

ü находить значения корня, степени, логарифма, тригонометрических выражений на основе определения, используя при необходимости инструментальные средства; пользоваться приближенной оценкой при практических расчетах;

ü выполнять преобразования выражений, применяя формулы, связанные со свойствами степеней, логарифмов, тригонометрических функций;

 

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства.

 

Функции и графики

уметь:

ü вычислять значение функции по заданному значению аргумента при различных способах задания функции;

ü определять основные свойства числовых функций, иллюстрировать их на графиках;

ü строить графики изученных функций, иллюстрировать ПО графику свойства элементарных функций;

ü использовать понятие функции для описания и анализа зависимостей величин;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

ü для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.

 




Читайте также:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (839)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)