Мегаобучалка Главная | О нас | Обратная связь


Тема 16. Числовые ряды



2015-12-15 525 Обсуждений (0)
Тема 16. Числовые ряды 0.00 из 5.00 0 оценок




Понятие числового ряда. Сходимость ряда и его сумма. Свойства сходящихся рядов. Необходимый признак сходимости (доказать). Расходимость гармонического ряда. Достаточные признаки сходимости знакоположительных рядов: признак сравнения, Даламбера. Знакопеременные ряды. Признак Лейбница сходимости знакочередующихся рядов. Абсолютная и условная сходимость. ([1 или 6, § 13.1–13.5]; [2 или 7, § 13.1 – 13.3], или [3, §13.1 – 13.7], или [5, §9.1 – 9.7].

При изучении данной темы студенты знакомятся с новой формой изучения числовой последовательности. Следует уяснить, что обозначение , или u1 + u2 + …+ un + …, – символ, который не следует смешивать с обычной (конечной) суммой. Сумма и сходимость ряда определяется через предельный переход. При рассмотрении ряда могут решаться задачи: определение его суммы и исследование сходимости. Решение первой задачи «перекрывает» и вторую, но это не всегда возможно или вызывает значительные трудности. Решение второй задачи не менее важно, так как в случае, если ряд сходится, его сумма существует и ее можно найти приближенно с любой степенью точности, взяв сумму достаточного числа его первых членов.

Нужно уяснить, что необходимый признак сходимости (для сходящихся рядов при ) не является достаточным, но из необходимого признака сходимости следует, что если предел общего члена , то ряд расходится. Поэтому исследование сходимости числового ряда рекомендуется начинать с вычисления предела его общего члена (если он находится не очень сложно). Если предел окажется равным нулю, то это означает, что ряд может сходиться. Чтобы установить, сходится ли ряд, далее применяют достаточные признаки сходимости.

Применяя признаки сравнения, можно использовать в качестве «эталонных» следующие ряды:

1) геометрический ряд – сходится при |q|<1, расходится при

2) гармонический ряд – расходится;

3) обобщенный гармонический ряд – сходится при расходится при

К признаку сравнения обращаются тогда, когда признак Даламбера показывает, что . Во всех этих случаях применения достаточных признаков сходимости речь идет об исследовании рядов с положительными членами.

Говоря о сходимости знакочередующихся рядов, следует иметь в виду два типа сходимости: абсолютную и условную. Важность этих понятий связана с тем, что абсолютно сходящиеся ряды обладают некоторыми свойствами конечных сумм в отличие от условно сходящихся рядов. Решать вопрос о сходимости знакочередующегося ряда рекомендуем в таком порядке.

1. Составить ряд из абсолютных величин членов данного знакочередующегося ряда.

2. Исследовать сходимость полученного ряда. Может оказаться, что этот ряд сходится. Тогда исходный ряд также сходится, и притом абсолютно. Задача решена.

Если же составленный ряд расходится, то в этом случае о сходимости или расходимости исходного ряда сделать вывод нельзя; необходимо выполнить пункт 3.

3. Исследовать условную сходимость исходного знакочередующегося ряда, например, по признаку Лейбница.

 

 

 

 

 

Вопросы для самопроверки



2015-12-15 525 Обсуждений (0)
Тема 16. Числовые ряды 0.00 из 5.00 0 оценок









Обсуждение в статье: Тема 16. Числовые ряды

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (525)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)