Мегаобучалка Главная | О нас | Обратная связь


Дифференциальные уравнения первого порядка



2015-12-15 563 Обсуждений (0)
Дифференциальные уравнения первого порядка 0.00 из 5.00 0 оценок




Дифференциальные уравнения первого порядка

 

Определение. Дифференциальным уравнением первого порядканазывается уравнение, связывающее неизвестную функцию, ее первую производную и независимую переменную, т.е. уравнение вида:

Если это уравнение преобразовать к виду , то полученное дифференциальное уравнение первого порядка называется уравнением, разрешенным относительно производной. Преобразуем это выражение далее:

Функцию представим в виде: Тогда при подстановке в полученное выше уравнение получим:

.

Левая часть этого выражения называется дифференциальной формойуравнения первого порядка.

 

Дифференциальные уравнения с разделяющимися переменными

 

Определение. Дифференциальное уравнение называется уравнением с разделяющимися переменными, если его можно представить в виде:

или в виде:

Перейдем к новым обозначениям

Получим:

После нахождения соответствующих интегралов получаем общее решение дифференциального уравнения с разделяющимися переменными.

Если заданы начальные условия, то при их подстановке в общее решение находится постоянная величина С, и соответственно частное решение.

Пример. Найти общее решение дифференциального уравнения: . Имеем

; ; .

Интеграл, стоящий в левой части, берется по частям:

;

; .

Получаем общий интеграл исходного дифференциального уравнения, т.к. искомая функция и не выражена через независимую переменную. В этом и заключается отличие общего (частного) интеграла от общего (частного) решения.

Чтобы проверить правильность полученного ответа продифференцируем его по переменной х.

;

- верно.

Пример. Найти решение дифференциального уравнения при условии . Имеем

; ; ; ; .

При получаем

Таким образом: или - частное решение.

Проверка: . Следовательно,

- что верно.

Пример. Решить уравнение Имеем

; ; ; .

Получаем:

- общий интеграл и - общее решение.

Пример. Решить уравнение Имеем

Пример. Решить уравнение при условии . Имеем

;

Интеграл, стоящий в левой части берётся по частям:

.

Если , то Итого, частный интеграл: .

Пример. Решить уравнение . Имеем

; ;

; ;

Получаем общий интеграл:

.

Пример. Решить уравнение .

Преобразуем заданное уравнение:

; ; ; .

Получили общий интеграл данного дифференциального уравнения. Если из этого соотношения выразить искомую функцию у, то получим общее решение.

Пример. Решить уравнение . Имеем

; ; ; ;

Допустим, заданы некоторые начальные условия и . Тогда:

Получаем частное решение

 



2015-12-15 563 Обсуждений (0)
Дифференциальные уравнения первого порядка 0.00 из 5.00 0 оценок









Обсуждение в статье: Дифференциальные уравнения первого порядка

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (563)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)