Классификации полимеров
Полимеры – это вещества, состоящие из макромолекул – гигантских молекул, относительная молекулярная масса которых превышает 5000. Поэтому полимеры называют ещё высокомолекулярными соединениями (ВМС). Простейшим органическим полимером является полиэтилен. Две молекулы этилена, соединяясь, образуют молекулу бутилена: CH2=CH2 + CH2=CH2 Þ CH3-CH2-CH=CH2. Исходное вещество − этилен − называют мономером, образующийся бутилен − димером. При соединении трех молекул этилена образуется тример, четырех − тетрамер и т.д. Если соединяется большое число (n) молекул мономера, образуется полимер ("поли" − много): nCH2=CH2 Þ [-CH2-CH2-]n. Многократно повторяющиеся группировки, являющиеся остатками мономеров, называют звеньями, или мономерными звеньями, а большие молекулы, составленные из звеньев, − макромолекулами, или полимерными цепями. Группы, стоящие на концах цепи, - концевые группы. Число звеньев в цепи − степень полимеризации n. Относительная молекулярная масса полимера М равна молекулярной массе мономерного звена MЗВ, умноженной на степень полимеризации: M = n×MЗВ (n обычно 500-10000 и более). Полимеры с относительной молекулярной массой 500–5000 называют олигомерами. Главная особенность строения полимеров – это наличие длинных цепных молекул (макромолекул), связанных между собой ван-дер-ваальсовыми связями. Сама цепь образована прочными химическими связями длиной 1–1,5 Å, цепи же связаны между собой относительно слабыми ван-дер-ваальсовыми связями, радиус их действия 3–4 Å. В сетчатых полимерах химические связи имеются и между цепями. Если число таких связей мало по сравнению с числом звеньев в макромолекулах (редкая сетка), то полимер сохраняет свойства, характерные для полимеров, – способность к высокоэластическим деформациям и т.п. Если же сетка частая (практически каждое звено макромолекулы связано со звеном соседней цепи), то полимер теряет указанные свойства. Так, при вулканизации каучук превращается в эбонит – твёрдое вещество, не способное к высокоэластическим деформациям. Если атомы в веществе соединены только химическими связями, то свойства его вообще не имеют ничего общего со свойствами полимеров. Так, алмаз − одна гигантская молекула (макромолекула), но полимерных свойств не проявляет. По этой же причине металлы также не могут быть отнесены к полимерам. Таким образом, наличие гигантских молекул и двух типов связей предопределяет все типичные свойства полимеров, которыми не обладают низкомолекулярные вещества. Природные и некоторые синтетические полимеры имеют собственные названия − целлюлоза, коллаген, лигнин, капрон, лавсан, бакелит, тефлон и др. Название большинства синтетических полимеров обычно складывается из названия мономера и приставки "поли". Например, продукт полимеризации этилена называют полиэтиленом, стирола −полистиролом, метилметакрилата − полиметилметакрилатом и т.д. Общепринятая запись химических формул таких полимеров: [-CH2-CH2-]n , [-CH2-CH-]n, [-CH2-CH-]n | | C6H5 СºN Концевые группы во внимание не принимают (как и при расчете М) и формулы записывают без них. Макромолекула может быть построена из одинаковых по химическому строению мономеров или из мономеров разного строения. Полимеры, построенные из одинаковых мономеров, называют гомополимерами. Полимерные соединения, цепи которых содержат несколько типов мономерных звеньев, называют сополимерами. Так, гомополимером является, например, полиэтилен, а примерами сополимеров могут служить белки, в макромолекулах которых чередуются остатки нескольких типов аминокислот. Мономеры могут соединяться в макромолекуле друг с другом с образованием полимеров линейного, разветвленного и сетчатого (пространственного) строения. Линейными называют полимеры, молекулы которых представляют собой длинные цепи, не имеющие разветвлений или же которые имеют короткие ответвления в пределах одного мономерного звена: [-CH2-CH-]n , [-CH2-CH-]n | | OH C6H5 поливиниловый спирт полистирол Разветвленными полимерами называют полимеры, макромолекулы которых имеют боковые ответвления от цепи, называемой главной или основной. Число ответвлений и их размер могут изменяться в очень широких пределах. Например, молекулу полиэтилена высокого давления схематически можно изобразить так:
CH2- CH2- CH2- CH2- CH2- CH2- CH2- | …..-CH2-CH- CH2- CH2- CH2- CH2- CH- CH2- CH2- CH2- CH2- CH2-… | CH2- CH2- CH2- CH2- CH2- CH2- CH2-
Сетчатым,или пространственными, называют полимеры, построенные из длинных цепей, соединенных друг с другом поперечными химическими связями в трехмерную сетку. Примерами таких полимерных материалов являются фенолформальдегидные смолы, резины, эбонит и др. Сополимеры также могут быть линейными, разветвленными и сетчатыми. По отношению к нагреванию полимеры делятся на термопластическиеитермореактивные. При нагревании термопластических полимеров их свойства постепенно изменяются, и при достижении определенной температуры они переходят в вязкотекучее состояние. Плавление происходит преимущественно в результате уменьшения сил межмолекулярного взаимодействия и увеличения кинетической энергии молекул. При охлаждении жидких термопластических полимеров наблюдаются обратные явления. Поскольку химическая природа полимера при этом не изменяется, то процесс плавления и процесс отвердевания можно повторить много раз. К термопластическим полимерам относятся полиэтилен, полистирол и др. При нагревании термореактивных полимеров свободные функциональные группы или непредельные связи соседних макромолекул взаимодействуют друг с другом с образованием химических связей. Полимер приобретает сетчатую структуру – отвердевает (переходит в стеклообразное состояние). Такие полимеры не восстанавливают свои свойства при нагревании и последующем охлаждении. Примером термореактивных полимеров могут служить фенолформальдегидные смолы, мочевиноальдегидные смолы и т.п. Особенностью полимеров является их способность испытывать высокоэластические деформации. Различные полимеры проявляют это свойство при различных температурах: так, например, каучук эластичен даже при очень низких температурах (-600С), полиметилметакрилат (органическое стекло) − лишь при температурах выше 800C. Полимеры, которые легко деформируются при комнатной температуре, называют эластомерами, труднодеформируемые − пластомерами(пластиками). По происхождению полимеры делятся на природные, синтетические и искусственные. Природные, илинатуральные, полимеры – это полимеры, встречающиеся в окружающем нас мире: белки, целлюлоза, крахмал, натуральный каучук и др. Примерами пищевых ВМС являются пектиновая кислота, агар (полисахарид), крахмал, агароид. Яблочный пектин имеет относительную молекулярную массу 23000-35000, растворимая фракция агара − 11000-25000. Синтетические полимеры получают синтезом из низкомолекулярных веществ − мономеров, это полиэтилен, полипропилен, полистирол, фенолформальдегидные смолы и т.д. Искусственные полимеры получают из природных полимеров путем их химической модификации. Например, при обработке целлюлозы азотной кислотой получают её эфир − нитроцеллюлозу. Полимеры бывают полярнымии неполярными. Полярность полимеров обусловлена наличием полярных групп в звеньях макромолекул, таких как -ОН, -СN, -COOH, -CNH2 и т.п. Полярность макромолекул характеризуется величиной дипольного момента m, который равен векторной сумме дипольных моментов всех полярных групп, распределённых вдоль цепи. При симметричном расположении полярных групп, например, полимер -СCl2-CCl2- является неполярным (m = 0). Наличие полярных групп в макромолекуле увеличивает межмолекулярные взаимодействия. По химической природе полимеры делят на органические, неорганические, элементоорганические. К органическимотносится большинство высокомолекулярных веществ, молекулы которых состоят из углерода, водорода, кислорода и азота. Молекулы неорганических полимеров построены из атомов кремния, алюминия, германия, серы и др., например, полисиланы, полифосфорные кислоты и др. Так, белый фосфор P4 (тетраэдр) при нагревании превращается в полимер. Черный фосфор образуется из белого при температуре 2000C и давлении 12000 атм. Это полимерное соединение, имеющее, подобно графиту, слоистую структуру. При нагревании серы происходит превращение циклов S8 в линейный полимер. Элементоорганические полимеры могут быть двух типов: когда главная молекулярная цепь имеет неорганическую природу, а боковые ответвления − органическую и наоборот. По составу главной цепи молекулы полимеры делятся на гомоцепные и гетероцепные. Гомоцепные полимеры имеют главную цепь, состоящую из одинаковых атомов. Если она состоит из атомов углерода, то такие полимеры называют карбоцепными (полиэтилен, полистирол и др.). Если главная цепь состоит из атомов кремния, то полимеры называют кремнийцепными. Бывают алюминийцепные, стронцийцепные и другие полимеры. Гетероцепными называют полимеры, главная цепь которых состоит из разных атомов. К гетероцепным полимерам относятся простые эфиры, например, полиэтиленгликоль (его цепь состоит из атомов углерода и кислорода): ….- CH2-CH2-O- CH2-CH2-O- CH2-CH2-O- CH2-CH2-O-… сложные эфиры, например, глифталевые смолы:
OH O O ½ ½½ ½½ …- O-CH2- C- CH2-O-C-C6H4- C- O-CH2- , ½ полипептиды (белки): O O ½½ ½½ ...-C-R1-NH-C-R2-NH-C-R3-NH-… , полиамиды − капрон: O O ½½ ½½ …. C- CH2-CH2-CH2-CH2-CH2-NH- C- CH2-CH2-CH2-CH2-CH2-NH- .
По характеру структуры полимеры делят на кристаллические − с дальним порядком расположения молекул − и аморфные, имеющие лишь ближний порядок в расположении атомов и молекул. Полимерные цепи могут быть построены сочетанием коротких цепей различных полимеров, называемых блоками (молекула одного мономера − А, другого − В), например: …- A-A- A- A- A- A- A- A- A- A- A- B- B- B- B- B- B- B- B-B- A- A- A- A- Это – блоксополимеры. Возможно и другое строение макромолекул, когда главная цепь состоит из одного мономера А, а боковые цепи из другого В:
A- A- A- A- A- A- A- A- A- A- A- A- A- A- A- A- A- A- A- A- A- ½ ½ B- B- B- B- B- B- B- B- B- B- B- B- B- B- B- B-
Такие полимеры называют привитыми сополимерами, или графт-сополимерами. Полимеры бывают регулярнымии нерегулярными. Если в цепи полимера наблюдается монотонное чередование звеньев, т.е. соблюдается дальний порядок звеньев по цепи, то полимер построен регулярно. Нарушение этого порядка ведет к нерегулярности строения цепи полимера. Различают структурную регулярность и стереорегулярность. Структурная регулярность имеет место у полимеров, все звенья и все заместители которых расположены в пространстве в определенном порядке. Например, если звено полимера содержит заместитель (х), то возможны следующие варианты присоединения звеньев друг к другу, обеспечивающие структурную регулярность или нерегулярность цепи: Вариант (а) называют «голова к хвосту», а вариант (б) – «голова к голове». Если звенья вдоль цепи соединены друг с другом только определённым образом (или вариант (а), или вариант (б)), то полимер является структурно-регулярным, если же соединение звеньев произвольное, то полимер − нерегулярный. Стереорегулярными называют полимеры, у которых все заместители расположены в пространстве определённым образом. Например, в полимерной цепи возможна l-d- оптическая изомерия, обусловленная наличием асимметрических (херальных) атомов углерода. Возможно существование регулярных изотактических и синдиотактических полимеров:
Если же расположение заместителей произвольное, то полимер является нерегулярным, такие полимеры называют атактическими. Другой случай стереорегулярности – существование цис- и трансполимеров: То есть, если все заместители вдоль цепи расположены в цис-положении или в транс-положении, то полимер имеет стереорегулярное строение, если же положение заместителей произвольное, то полимер – нерегулярный. Структура молекул определяется способом производства полимера. При обработке полимеров (нагрев, растворение и т.д.) структура молекул почти не изменяется, и нельзя, например, нерегулярный полимер сделать регулярным. Общая структура полимеров складывается из структуры молекул и надмолекулярной структуры.
Популярное: Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2645)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |