Мегаобучалка Главная | О нас | Обратная связь


Сделать проверку решения. Вариант СЛАУ Вариант СЛАУ



2015-12-13 9808 Обсуждений (0)
Сделать проверку решения. Вариант СЛАУ Вариант СЛАУ 0.00 из 5.00 0 оценок




 

Вариант СЛАУ Вариант СЛАУ

 


Задание 5

 

Найти общее и частное решение неоднородной СЛАУ. Сделать проверку решения.

 

Решение:

 

Количество уравнений в системе равно 4, а количество переменных в системе 5, следовательно, т.к. - система имеет бесконечное множество решений или не имеет решений.

Для решения системы выпишем расширенную матрицу системы:

.

Приведем расширенную матрицу системы к эквивалентной матрице системы в ступенчатом виде.

Те переменные, которые стоят в начале каждого уравнения – базисные, остальные – свободные. - базисные, - свободные
- по теореме Кронекера-Капелли система имеет решение, если ранг расширенной матрицы равен рангу приведенной матрицы.

 

Выразим базисные переменные через свободные

 

Общее решение СЛАУ

Запишем частное решение, придавая любые значения свободным переменным.

Например, при значение , а .

Ответ в виде вектора: .

Сделаем проверку, подставив найденное решение в каждое уравнение системы.

Проверка:

; .

Итак, мы видим, что после подстановки в систему каждое уравнение обратилось в числовое тождество. Следовательно, решение системы найдено верно.

 

 

Варианты задания 5

 

Найти общее и частное решение неоднородной СЛАУ. Сделать проверку решения. (метод Гаусса)

 

Вариант СЛАУ Вариант СЛАУ

 

 

Задание 6

Найти фундаментальный набор решений однородной СЛАУ. Сделать проверку решения.

 

Решение:

 

Количество уравнений в системе равно 4, а количество переменных в системе 5, следовательно, т.к. - система имеет бесконечное множество решений.

 

Для решения системы выпишем исходную матрицу системы:

.

 

Приведем исходную матрицу системы к эквивалентной матрице системы в ступенчатом виде.

 

- система имеет бесконечное множество решений, включая нулевое - тривиальное.

Те переменные, которые стоят в начале каждого уравнения – базисные, остальные – свободные. - базисные, - свободные

Выразим базисные переменные через свободные

Найдем фундаментальный набор решений.

Количество фундаментальных решений равно количеству свободных слагаемых, т.е. 2.

Придадим свободным переменным любые такие значения, которые образуют квадратную матрицу с определителем не равным нулю; самый простой набор таких значений – единичная матрица.

 

Запишем ответ в виде двух векторов:

и .

Сделаем проверку, подставив найденное решение в каждое уравнение системы.

Проверка:

; .

; .

 

Итак, мы видим, что после подстановки в систему каждое уравнение обратилось в числовое тождество. Следовательно, решение системы найдено верно.

 

Варианты задания 6

 



2015-12-13 9808 Обсуждений (0)
Сделать проверку решения. Вариант СЛАУ Вариант СЛАУ 0.00 из 5.00 0 оценок









Обсуждение в статье: Сделать проверку решения. Вариант СЛАУ Вариант СЛАУ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (9808)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)