Мегаобучалка Главная | О нас | Обратная связь


Метрические пространства



2016-01-02 730 Обсуждений (0)
Метрические пространства 0.00 из 5.00 0 оценок




Первое свойство, которым мы наделим пространство сигналов, называют метрикой.

Метрическое пространство – это множество с подходящим образом определенным расстоянием между его элементами. Само это расстояние, как и способ его определения, называют метрикойи обозначают . Метрика должна представлять собой функционал, т.е. отображение любой пары элементов и множества на действительную ось, удовлетворяющее интуитивно понятным требованиям (аксиомам):

 

1) (равенство при ),

2) ,

3) (аксиома треугольника).

 

Следует отметить, что метрики можно задать разными способами и в результате для одних и тех же элементов получить разные пространства.

 

Примеры метрик:

1) ,

2) евклидова метрика,

3) евклидова метрика.

Линейные пространства

Усовершенствуем структуру пространства сигналов, наделив его простыми алгебраическими свойствами, присущими реальным сигналам, которые можно алгебраически складывать и умножать на числа.

ЛинейнымпространствомL над полем F называют множество элементов , называемых векторами, для которых заданы две операции –сложение элементов (векторов) и умножение векторов на элементы из поля F (называемые скалярами) . Не вдаваясь в математические детали, в дальнейшем, под полем скаляров будем понимать множества вещественных чисел R (случай действительного пространства L) или комплексных чисел С (случай комплексного пространства L). Эти операции должны удовлетворять системе аксиом линейного пространства.

1. Замкнутость операций сложения и умножения на скаляр:

,

.

2. Свойства сложения:

ассоциативность,

коммутативность.

3. Свойства умножения на скаляр:

ассоциативность,

дистрибутивность суммы векторов,

дистрибутивность суммы скаляров.

4. существование нулевого вектора.

5. существование проти-

воположного вектора.

 

Вектор, образованный суммированием нескольких векторов со скалярными коэффициентами

,

называют линейной комбинацией (многообразием). Легко видеть, что множество всех линейных комбинаций векторов при разных ai (не затрагивая ) также образует линейное пространство, называемое линейной оболочкой для векторов .

Множество векторов называют линейно независимыми, если равенство

возможно лишь при всех ai = 0. Например, на плоскости любые два неколлинеарные вектора (не лежащие на одной прямой) являются линейно независимыми.

Система линейно независимых и ненулевых векторов образует в пространстве L базис, если

.

Этот единственный набор скаляров {ai}, соответствующий конкретному вектору , называют егокоординатами(проекциями) по базису .

Благодаря введению базиса операции над векторами превращаются в операции над числами (координатами)

.

Если в линейном пространстве L можно отыскать n линейно независимых векторов, а любые n + 1 векторов зависимы, то nразмерностьпространства L (dim L = n).

 



2016-01-02 730 Обсуждений (0)
Метрические пространства 0.00 из 5.00 0 оценок









Обсуждение в статье: Метрические пространства

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (730)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)