Мегаобучалка Главная | О нас | Обратная связь

КРАТКАЯ ИСТОРИЯ МАСС-СПЕКТРОМЕТРИИ




ВВЕДЕНИЕ

Область применения оксипропилированных ароматических аминов весьма разнообразна, а мировой объем потребления данных продуктов составляет около 2 миллионов тонн в год. Основными продуктами, применяемыми в промышленности являются: N-оксипропилированный анилин, NN'-диоксипропиоированный анилин.

Перспективными направлениями потребления данных продуктов могут быть промышленность синтетического каучука, резинотехническая промышленность, производство моторных топлив.

Вторичные ароматические аминоспирты и их алкоголяты могут использоваться в качестве стартовых систем в процессах полимеризации диеновых мономеров и окисей олефинов.

В paботах показаны кинетические аспекты реакций раскрытия цикла окисей при взаимодействии с аминами. Использование оксидов несимметричного строения возможно раскрытие цикла по двум направлениям, с образованием вторичных аминоспиртов 95% и первичных аминоспиртов 5%.

В работе синтезированы продукты реакции β-оксипропилирования п-толуидина, количественно определен изомерный состав и строение образующихся продуктов методами протонного ядерно-магнитного резонанса и масс-спектрометрии.

Масс-спектрометрия - это физический метод измерения отношения массы заряженных частиц материи (ионов) к их заряду.

Этот метод, сегодня рутинно используемый в тысячах лабораторий и предприятий мира, имеет в своей основе фундаментальные знания природы вещества и использует основополагающие физические принципы явлений. Прежде чем разобраться, зачем и кому нужен этот метод, коротко (насколько это возможно) и упрощенно остановимся на том, как он реализуется.

Естественно, приборы, которые используются в этом методе, называются масс-спектрометры или масс-спектрометрические детекторы. Эти приборы имеют дело с материальным веществом, которое как известно, состоит из мельчайших частиц - молекул и атомов. Масс-спектрометры устанавливают, что это за молекулы (то есть, какие атомы их составляют, какова их молекулярная масса, какова структура их расположения) и что это за атомы (то есть их изотопный состав). Существенное отличие масс-спектрометрии от других аналитических физико-химических методов состоит в том, что оптические, рентгеновские и некоторые другие методы детектируют излучение или поглощение энергии молекулами или атомами, а масс-спектрометрия имеет дело с самими частицами вещества.



Масс-спектрометрия измеряет их массы, вернее соотношение массы к заряду. Для этого используются законы движения заряженных частиц материи в магнитном или электрическом поле. Масс-спектр - это просто рассортировка заряженных частиц по их массам.

Следовательно, первое, что надо сделать для того, чтобы получить масс-спектр, превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы - ионы. Этот процесс называется ионизацией и по разному осуществляется для органических и неорганических веществ.

В органических веществах молекулы представляют собой определенные структуры, образованные атомами. Природа и человек создали поистине неисчислимое многообразие органических соединений. И мы сегодня умеем практически все из них превращать в ионы.

До недавнего времени основой наших представлений о структуре атомов и молекул служили исследования методами оптической спектроскопии. В связи с усовершенствованием спектральных методов, продвинувших область спектроскопических измерений в диапазон сверхвысоких (примерно 103 - 106 МГц; микрорадиоволны) и высоких частот (примерно 10-2 - 102 МГц; радиоволны), появились новые источники информации о структуре вещества. При поглощении и испускании излучения в этой области частот происходит тот же основной процесс, что и в других диапазонах электромагнитного спектра, а именно при переходе с одного энергетического уровня на другой система поглощает или испускает квант энергии.

Разность энергий уровней и энергия квантов, участвующих в этих процессах, составляют около 10-7 эВ для области радиочастот и около 10-4 эВ для сверхвысоких частот.

 

 

Теоритические основы метода исследования

Историческая справка

КРАТКАЯ ИСТОРИЯ МАСС-СПЕКТРОМЕТРИИ

Современный масс-спектрометр базируется на основополагающей работе, сделанной сэром Дж. Дж. Томсоном в Кэвендишевской лаборатории Кембриджского университета. Исследования Томсона, приведшие к открытию электрона в 1897 году, также привели к созданию первого масс-спектрометра, построенного им для изучения влияния электрического и магнитного полей на ионы, генерируемые в остаточном газе на катоде рентгеновской трубки.

К концу Первой мировой войны работы Френсиса Астона и Артура Демпстера привели к значительному улучшению точности и воспроизводимости измерений на масс-спектрометрах. Позднее Альфред Нир воплотил эти достижения вместе со значительным продвижением в вакуумной технике и электронике в конструкцию масс-спектрометра, значительно сократив его размеры. Нир и Джонсон впервые построили масс-спектрометр с двойной фокусировкой. Еще раньше, в 1946 году, Уильям Стивенс предложил концепцию время-пролетных анализаторов, способных разделять ионы путем измерения скоростей их движения по прямому пути к коллектору. В середине 1950-ых годов Вольфганг Пол разработал квадрупольный масс-анализатор. Этот анализатор способен разделять ионы с помощью осцилирующего электрического поля. Другой инновационной разработкой Пола было создание квадрупольной ионной ловушки, специально предназначенной для захвата и измерения масс ионов. Первая ионная ловушка стала коммерчески доступной в 1983 (патент Finnigan). Сегодня квадруполи и квадрупольные ионные ловушки являются наиболее распространенными масс-анализаторами в мире и за свои инновационные работы Вольфганг Пол получил в 1989 году Нобелевскую премию по физике. В 1950-е годы впервые были соединены газовый хроматограф и масс-спектрометр (Голке, Маклаферти и Рихаге). Затем появились новые методы ионизации - бомбардировка быстрыми атомами (Барбер), химическая ионизация (Тальрозе, Филд, Мансон), полевая десорбция/ионизация (Беки), лазерная десорбция/ионизация, ассистируемая матрицей - MALDI (Танака, Карас, Хилленкампф) ионизация в электроспрее - ESI (Доул, Фенн), ионизация в инуктивно-связанной плазме (Фассел). Были разработаны новые приборы для новых применений - масс-спектрометры ионно-циклотронного резонанса (Хиппл) и, затем, с Фурье-преобразованием сигнала (Комиссаров, Маршалл), тройные квадрупольные тандемные масс-спектрометры (Йоуст, Энке).

 





Читайте также:





Читайте также:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...

©2015 megaobuchalka.ru Все права защищены авторами материалов.

Почему 3458 студентов выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)