Определенный интеграл. Интегрируемость непрерывной функции. Формула Ньютона – Лейбница
Рассмотрим непрерывную функцию y = f ( x ), заданную на отрезке [ a, b ] и сохраняющую на этом отрезке свой знак ( рис.8 ). Если f – непрерывная, неотрицательная функция на отрезке [a, b], и F – её первообразная на этом отрезке, то площадь соответствующей криволинейной трапеции равна приращению первообразной на отрезке [a, b], т.e. Рассмотрим функцию S ( x ), заданную на отрезке [ a, b ]. Если a<x
т.e. S ( x ) – первообразная для f ( x ). Отсюда, согласно основному свойству первообразных, для всех x S ( x ) = F ( x ) + C , где C – некоторая постоянная, F – одна из первообразных функции f . Чтобы найти C , подставим x = a : F ( a ) + C = S ( a ) = 0, отсюда, C = F ( a ) и S ( x ) = F ( x ) F ( a ). Так как площадь криволинейной трапеции равна S ( b ) , то подставляя x = b , получим: S = S ( b ) = F ( b ) F ( a ). П р и м е р . Найти площадь фигуры, ограниченной кривой y = x2 и прямыми y = 0, x = 1, x = 2 ( рис.9 ) .
Определённый интеграл. Рассмотрим другой способ вычисления площади криволинейной трапеции. Разделим отрезок [ a, b ] на n отрезков равной длины точками: x0 = a < x1< x2< x3<…< x n 1< xn = b и пусть В каждом из отрезков [ xk 1, xk ] как на основании построим прямоугольник высотой f ( xk - 1 ). Площадь этого прямоугольника равна:
Числа a и b называются пределами интегрирования, f ( x ) dx – подынтегральным выражением. Итак, если f ( x )
Формула Ньютона - Лейбница. Сравнивая две формулы для площади криволинейной трапеции, приходим к следующему заключению: если F ( x ) - первообразная функции f ( x ) на отрезке [ a, b ], то
Это и есть знаменитая формула Ньютона – Лейбница.Она справедлива для любой функции f ( x ), непрерывной на отрезке [ a, b ] .
Т е о р е м а 1. Если функция Д о к а з а т е л ь с т в о. Так как функция
В силу произвольности
Популярное: Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1003)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |