Мегаобучалка Главная | О нас | Обратная связь


Форматы представления чисел



2018-07-06 997 Обсуждений (0)
Форматы представления чисел 0.00 из 5.00 0 оценок




Введение

Применение цифровых процессоров обработки сигналов (ЦПОС) в радиотехнических системах позволяет выполнять обработку поступающей информации в реальном времени. Это означает, что все операции алгоритма обработки сигнала должны выполняться за время, не превышающее период дискретизации входного сигнала.

Отличительной особенностью сигнальных процессоров является обработка больших массивов поточной цифровой информации с высокой производительностью. Выполнение этого требования достигается за счет высокой специализации сигнальных процессоров. Для них характерно разделение шин команд и шин данных (гарвардская архитектура), аппаратная поддержка программных циклов, наличие аппаратного умножителя, включение в систему команд операции умножения с накоплением МАС (С = A * B + C) с указанным в команде правилом изменения индекса элементов массивов.

Использование однотактного умножителя и ячеек памяти в качестве операндов обуславливает относительно низкие тактовые частоты работы этих процессоров. За счет быстрого выполнения команд межрегистрового обмена Ri→Rj не удается повысить производительность вычислений, как это делается в универсальных процессорах.

Малая разрядность (32 двоичных разряда и менее) сигнальных процессоров с фиксированной запятой может привести к неустойчивости рекурсивных фильтров. Более удобными для проектирования систем обработки являются микропроцессоры с плавающей запятой, так как они не требуют выполнения операций округления и нормализации данных, контроля переполнения суммы в программе. Ведущие компании выпускают как дешевые сигнальные процессоры с фиксированной запятой, так и более дорогие процессоры с плавающей запятой.

Примеры наиболее распространенных сигнальных процессоров: Motorola 56002,96002, Intel i960, Analog Devices 21xx,210xx, Texas Instruments TMS320Cxx. В курсовой работе расчет выполняется для систем, использующих сигнальный процессор ADSP-2189M (Analog Devices).

 

Структура и цели цифровой обработки аналоговых сигналов

Структурная схема цифровой обработки аналогового сигнала Х(t) состоит из антиэлайсингового фильтра (АФ), аналого-цифрового преобразователя (АЦП), центрального процессора (ЦП), цифро-аналогового преобразователя (ЦАП) и сглаживающего фильтра (СФ) (рис. 1).

 

 


Рис. 1. Схема цифровой обработки сигнала

В радиотехнических устройствах цифровая обработка обычно применяется в низкочастотных блоках. Сигналом X(t) может быть выходное напряжение микрофонного усилителя или выходное напряжение детектора (амплитудного, частотного, фазового). В настоящее время разработаны высокопроизводительные процессоры для обработки радиосигналов промежуточной частоты.

Отфильтрованный аналоговый сигнал Xф(t) преобразуется в пропорциональный двоичный m-разрядный код аналого-цифровым преобразователем. На выходе АЦП получается двоичное представление аналогового сигнала (рис. 2), которое затем обрабатывается арифметически цифровым сигнальным процессором (ЦП). Для 16-разрядного сигнального процессора ADSP 2189M разработаны микросхемы параллельных и последовательных АЦП и ЦАП соответствующей разрядности. В данном примере m=n=16. Количество ступеней квантования 16-разрядного АЦП равно 216-1= 65535. Типовые частоты квантования данного процессора составляют 8,16,32 и 64 кГц. Одно из указанных значений частоты задается в программе обработки данных при начальной инициализации процессора. Дискретные отсчеты

 

 

 


Рис. 2. Квантование аналогового сигнала по времени и уровню

аналогового сигнала хранятся в виде массива 16-разрядных двоичных чисел в специально отведенной области памяти – памяти данных (Data Memory), расположенной внутри микросхемы сигнального процессора. Объем памяти данных ADSP-2189M составляет 48К 16-разрядных слов. Максимальное количество дискретных отсчетов АЦП, хранящихся во внутренней оперативной памяти данных процессора, не может превышать 49 152 (48х1024) точек. При выполнении программы элементы массива можно циклически читать одной ассемблерной командой

MХ0 = DM (I0,M1),

где MX0 – регистр умножителя–накопителя, I0 и M1 – индексные регистры генератора адреса, которые хранят адрес ячейки памяти (I0) и – шаг изменения адреса (М1). Например, если перед первым выполнением команды DM в регистрах были записаны значения I0=5, М1=1, то после выполнения команды в регистр MХ0 процессор запишет 16-разрядное двоичное число пятой ячейки буфера данных (I0=5) и увеличит адрес на единицу (М1=1). При повторном проходе этой ветви программы выполнение команды MХ0 = DM (I0,M1) вызовет запись в регистр МХ0 шестого элемента буфера в памяти и т.д.

Основной особенностью сигнальных процессоров является обработка накопленного массива данных за время между соседними отсчетами TS. При стандартной частоте квантования FS = 8 кГц, принятой в телефонии, на обработку массива данных отводится время TS = 1/FS = 125 мкс.

Система, представленная на рис. 1, работает в реальном масштабе времени. В ней АЦП непрерывно дискретизирует сигнал с частотой, равной FS, и выдает новый отсчет процессору с такой же частотой. Для обеспечения работы в реальном масштабе времени процессор должен закончить все вычисления в пределах интервала дискретизации и передать выходной отсчет на ЦАП до поступления следующего отсчета с АЦП.

В сотовых радиотелефонах массив цифровых данных звукового сигнала накапливается в течение интервала времени 10-20 мс и на обработку отводится намного большее время, чем период дискретизации TS. Тем не менее, программа выполнятся также в темпе поступающей информации и должна закончиться до поступления нового блока данных.

Типичной функцией ЦП может быть реализация цифрового фильтра. В случае использования алгоритма быстрого преобразования Фурье (БПФ), блок данных загружается в оперативную память данных процессора. Пока работает алгоритм БПФ, тем временем новый блок данных загружается в память для обеспечения работы в реальном масштабе времени. Процессор должен вычислить преобразования Фурье в течение интервала передачи данных, чтобы быть готовым к процессу обработки следующего блока данных.

Обычно, прежде чем подвергнуться реальному аналого-цифровому преобразованию, аналоговый сигнал проходит через цепи нормализации, которые выполняют такие функции, как усиление, ослабление и фильтрацию. Для подавления нежелательных сигналов вне полосы пропускания и предотвращения наложения спектров (aliasing) необходим фильтр нижних частот или полосовой фильтр. Эту функцию выполняет аналоговый антиэлайсинговый фильтр (АФ). Блок АФ необходим в системе и в том случае, когда процессор выполняет программу цифровой фильтрации.

На рис. 3 показаны графики АЧХ цифрового фильтра и аналогового антиэлайсингового фильтра нижних частот. Цифровой фильтр должен пропустить сигнал с частотами, расположенными в пределах полосы пропускания, т.е. от нуля до f=fН. Кроме необходимого участка в полосе от нуля до FS/2 график имеет и копию при частотах, превышающих половину частоты дискретизации. Задачей антиэлайсингового фильтра является устранение копии АЧХ проектируемого цифрового фильтра. Характеристика АФ рассчитывается так, чтобы не пропустить сигналы с частотами, большими половины частоты дискретизации.

 

 

Рис. 3. Амплитудно-частотные характеристики фильтров

 

После обработки процессором содержащаяся в сигнале информация преобразуется обратно в аналоговую форму с использованием n-разрядного цифро-аналогового преобразователя (ЦАП). Сглаживающий фильтр необходим для преобразования дискретного сигнала в непрерывный. Показанный на рис. 1 цифро-аналоговый преобразователь может не использоваться, если обработанный процессором сигнал передается по радиоканалу в цифровой форме.

Главная цель цифровой обработки сигналов (ЦОС) заключается в получении содержащейся в них информации. Эта информация обычно присутствует в амплитуде сигнала (абсолютной или относительной), в частоте или в спектральном составе, в фазе или в относительных временных зависимостях нескольких сигналов. Как только желаемая информация будет извлечена из сигнала, она может быть использована различными способами.

В некоторых случаях желательно переформатировать информацию, содержащуюся в сигнале. В частности, смена формата имеет место при передаче звукового сигнала в телефонной системе с многоканальным доступом и частотным разделением (FDMA). В этом случае аналоговые методы используются, чтобы разместить несколько голосовых каналов в частотном спектре для передачи через радиорелейную станцию микроволнового диапазона, коаксиальный или оптоволоконный кабель. В случае цифровой связи аналоговая звуковая информация сначала преобразуется в цифровую с использованием АЦП. Цифровая информация, представляющая индивидуальные звуковые каналы, мультиплексируется во времени (многоканальный доступ с временным разделением, TDMA) и передается по последовательной цифровой линии связи .

Цифровая фильтрация является одним из наиболее мощных инструментальных средств ЦОС. Кроме очевидных преимуществ устранения ошибок в аналоговом фильтре, связанных с флуктуациями параметров компонентов во времени и по температуре, цифровые фильтры способны удовлетворять таким техническим требованиям по своим параметрам, которых, в лучшем случае, было бы чрезвычайно трудно или даже невозможно достичь в аналоговом исполнении. Кроме того, характеристики цифрового фильтра могут быть легко изменены программно. Поэтому они широко используются в телекоммуникациях, в приложениях адаптивной фильтрации, таких как подавление шума и распознавание речи, подавление эха в модемах. Совре-

менные высокопроизводительные модемы используют также методы цифровой обработки для выполнения таких функций, как модуляция, демодуляция, обнаружение и исправление ошибок, настройка параметров передачи.

Еще одна причина обработки сигналов заключается в сжатии полосы частот сигнала (без существенной потери информации) с последующим форматированием и передачей информации на пониженных скоростях, что позволяет сузить требуемую полосу пропускания канала. В высокоскоростных модемах и системах адаптивной импульсно-кодовой модуляции (ADPCM) широко используются алгоритмы устранения избыточности данных (сжатия), также как и в цифровых системах мобильной связи, системах записи звука MPEG, в телевидении высокой четкости (HDTV).

 

Форматы представления чисел

При разработке устройств, использующих сигнальные процессоры, необходимо учитывать конечную точность представления чисел в цифровых системах. Математический пакет MATLAB при синтезе проектируемого устройства позволяет анализировать эффекты, связанные с шумами квантования аналого-цифрового преобразования, учитывать переполнение разрядной сетки в процессе вычислений и искажения характеристик из-за квантования коэффициентов цифровых фильтров.

В процессорах семейства ADSP 21xx максимальная скорость вычислений достигается для чисел, представленных в формате с фиксированной запятой 1.15. Формат используется 16-разрядными процессорами и означает, что целая часть числа содержит только один разряд – знаковый. Дробная часть использует 15 разрядов (рис. 4). Числа, которые можно представить в данном

формате, по модулю не превосходят единицы. Двоичный код после запятой

 

                               

 

 


рис. 4. Дробное число со знаком в формате 1.15

делится на постоянный коэффициент 215 = 32768. Ноль в знаковом разряде соответствует положительным числам, единица – отрицательным. Пятнадцать разрядов после запятой обеспечивают дискретность представления, равную единице в младшем разряде 2-15 = 1/32768 ≈ 3∙10-5. Из таблицы 1 видно, что максимальное положительное число в формате 1.15 равно 32767/32768 ≈ 0,9999695.

Таблица 1. Формат с фиксированной запятой 1.15

Двоичный код Шестнадцатеричный код Число в формате 1.15
0000 0000 0000 0000 0000Н
0000 0000 0000 0001 0001Н 1/32768 = 0,0000305
0000 0000 0000 0010 0002Н 2/32768 = 0,0000610
…. …. ….
0111 1111 1111 1110 7FFEH 32766/32768 = 0,9999390
0111 1111 1111 1111 7FFFH 32767/32768 = 0,9999695
1000 0000 0000 0000 8000H -32768/32768 = -1
1000 0000 0000 0001 8001H -32767/32768 = -0,9999695
…. …. ….
1111 1111 1111 1110 FFFEH -2/32768 = -0,0000610
1111 1111 1111 1111 FFFFH -1/32768 = -0,0000305

 

При проектировании цифровых устройств, использующих формат 1.х, необходимо масштабирование коэффициентов уравнений с той целью, чтобы привести их значения к диапазону [-1,1]. Для масштабирования все коэффициенты уравнения делятся на одну и ту же константу, затем на нее же умножается правая часть уравнения. В качестве масштабирующего множителя удобно выбирать степень двойки, поскольку умножение в этом случае сводится к поразрядному сдвигу двоичного числа влево. Рассмотрим пример масштабирования коэффициентов эллиптического фильтра нижних частот 4-го порядка с частотой среза, равной 20 % от частоты Найквиста, пульсациями в полосе пропускания 1 дБ и подавлением сигнала в полосе задерживания 60 дБ. Перечисленные параметры фильтра зададим в командной строке MATLAB с помощью функции ellip

>> [b, a] = ellip(4, 1, 60, 0.2)

b =

0.0059 0.0053 0.0096 0.0053 0.0059

a =

1.0000 -3.0477 3.8240 -2.2926 0.5523

Из полученного решения видно, что максимальный по модулю коэффициент больше единицы и равен 3,824. Уравнение рекурсивного фильтра

y(k) = 0,0059 x(k) + 0,0053 x(k - 1) + 0.0096 x(k - 2) + 0.0053 x(k - 3) + + 0.0059 x(k - 4) + 3.0477 y(k – 1) - 3.8240 y(k – 2) + 2.2926 y(k – 3) -

- 0.5523 y(k – 4).

Для масштабирования разделим и умножим правую часть уравнения на 4

y(k) = 4(0,0015 x(k) + 0,0013 x(k - 1) + 0,0024 x(k - 2) + 0,0013 x(k - 3) +

+ 0,0015 x(k - 4) + 0,7619 y(k – 1) – 0,9560 y(k – 2) + 0,5731 y(k – 3) -

- 0,1381 y(k – 4)).

Округление коэффициентов из-за конечной разрядности процессора может заметно сказаться на рекурсивных фильтрах с крутым спадом АЧХ между полосами пропускания и задерживания. Предположим, что фильтр реализован на 9-разрядном процессоре в формате 1.8. В этом случае коэффициенты округляются с точностью до 1/256, так как у них остаются 8 двоичных разрядов после запятой.

» bm=b/4; % масштабирование коэффициентов числителя

» am=a/4; % масштабирование коэффициентов знаменателя

» [h,f]=freqz(b,a); % АЧХ до округления

» hm=freqz(bm,am);

» subplot(1,2,1)

» plot(f/pi,abs(h)) % график АЧХ до округления

» bq=round(bm*256)/256; % округление масштабированных

» aq=round(am*256)/256; % кооэффициентов

» hq=freqz(bq,aq); % АЧХ после округления

» subplot(1,2,2)

» plot(f/pi,abs(hq)) % график АЧХ после округления


Рис. 5. АЧХ рекурсивного ФНЧ до округления коэффициентов (слева) и после округления (справа) в формате 1.8

Из сравнения графиков на рис. 5 видно, что амплитудно-частотная характеристика фильтра изменилась существенно: в несколько раз увеличилась амплитуда пульсаций в полосе пропускания, скат АЧХ стал более пологим. Заданный параметр пульсаций в полосе пропускания 1 дБ фильтр с форматом 1.8 не обеспечивает. Округление коэффициентов в формате 1.15 приводит к небольшим искажениям частотной характеристики. В этом случае графики АЧХ без учета квантования и с квантованием практически сливаются.

В некоторых случаях удобно использовать для процессоров ADSP2189M целочисленный формат 16-разрядных двоичных чисел без знака или со знаком. Целые числа без знака имеют диапазон [0,65535], диапазон целых чисел со знаком составляет [-32768,32767]. Коэффициенты деления частоты генератора, задающие период квантования сигналов в АЦП и ЦАП, в рассматриваемой далее программе задаются в виде 16-разрядных целых чисел без знака. Программы на языке С поддерживают 16- и 32-разрядные переменные со знаком и без знака.

 



2018-07-06 997 Обсуждений (0)
Форматы представления чисел 0.00 из 5.00 0 оценок









Обсуждение в статье: Форматы представления чисел

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (997)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)