Справочные сведения. Указатель географических названий
Здесь следует обратить внимание на принцип блочностисистемы, поскольку отдельные логические блоки могут видоизменяться, пополняться или расширяться, не меняя структуры всей системы. Тематика, связанная с устойчивым развитием, требует обязательного рассмотрения почти всех тематических сюжетов в динамике, что и реализуется в соответствии с принципом эволюционно-сти и динамичности в нашей Атласной информационной системе. В основном это характеристики явлений за базовые временные периоды или годы. По ряду сюжетов для ретроспективного анали- за разработано несколько тематических анимаций: «Изменение распаханности и лесистости регионов России за последние 300 лет», «Рост сети городов России», «Динамика плотности населения России, 1678 — 2011 гг.», «Развитие металлургической промышленности России в XVIII—XXвв.» и «Развитие сети железных дорог (рост и электрификация), XIX—XX вв.», которые составляют первый этап подготовки комплексной анимации «Развитие промышленности и транспорта России». Ведется работа по анимациям «Население России», «Изменение административно-территориальных границ России» и др. По существу, это мини-информационные системы. Так, в последнем случае, обратившись к анализу границ, пользователь системы сможет не только узнать, как выглядели границы в XVIII—XXвв., просмотреть их иерархию для отдельных частей страны (губернии, уезды, волости), но и проследить историю смены границ за период советской власти и в новейшей истории страны. Можно будет выявить стабильные границы, существующие длительное время, и границы, часто изменяемые, получить справку энциклопедического характера о регионе, библиографическую справку о губернаторе и т. д. Разработана методика для анимирования анаморфоз, в том числе и двухмерных. Важнейшее приложение системы — разработка сценариев для развития страны и ее регионов. В этом случае реализуется принцип многовариантности, когда конечному пользователю предлагается ряд интересующих его решений, например оптимистические, пессимистические и т.д. сценарии. В реальной жизни это может быть характеристика тех изменений, которые произойдут при реализации проектов прокладки транспортных коридоров через территорию России (железнодорожные магистрали Шанхай —Роттердам через Казахстан с выходом на российские дороги, что не планируется при варианте «шелкового пути»; соединение железных дорог Кореи и Японии с российскими и, как достаточно отдаленная перспектива, соединение Китая и СШАжелезнодорожной магистралью через Берингов пролив). Интересны варианты строительства нефте- и газопроводов, в том числе различные варианты развития Балтийской системы. Любопытны и анализы теоретически возможных сценариев развития, например при полном исчерпании каких-либо ресурсов. Кстати, для будущих поколений нефть и газ могут оказаться не столь уж ценным сырьем, так как технологии энергетики через 100 лет вряд ли будут на них ориентироваться (что, кстати, и было всего лишь 100 лет назад). Но, с другой стороны, появление принципиально иных технологий может затребовать этот же ресурс для совершенно иных целей, например неэнергетического производства. Сценарии рождают мысли, а они, в свою очередь, — новые сценарии. И чем сложнее эти сценарии, тем все больше возникает насущная потребность в интеллектуализации системы, когда экспертные системы и применение нейронных сетей помогают в условиях большой сложности, зачастую при существенной нечеткости задач получать приемлемые результаты. Очень важны возможности содержательного моделирования (то, что за рубежом стали называть mining modelling) сложных явлений в рамках информационной системы. Основой подобного моделирования служит комплексный системный подход к моделированию социоэкосистем. Так, пользователь системы сможет смоделировать некоторую структуру, управление которой представит варианты, ведущие к повышению уровня благосостояния народа или повышению его общественного здоровья как конечного результата для многих преобразований с оценкой необходимых затрат для достижения результата. В настоящее время особенно драматична ситуация с продолжительностью жизни мужчин при очень значительном различии данного показателя для мужчин и женщин (что характерно лишь для самых беднейших стран Африки). Однако анализ комплекса показателей позволяет сделать вывод — на решение этой задачи потребуются огромные средства и выполнить ее можно за длительное время, если пытаться улучшить ситуацию через экономические механизмы, поэтому прежде всего надо обратить внимание на внеэкономические механизмы, рекомендуемые И. А. Гундаревым [2001] и детально проанализированные С. М. Мягковым [2002]. Кстати, здесь очень наглядно проявляется нечеткость в выборе приоритетов (или национальных интересов): к чему же мы стремимся — к сохранению территории, численности населения, повышению уровня жизни населения, а затем уже и ее качества или продолжительности ожидаемой здоровой жизни (ведь вряд ли жизнь инвалида в современных российских условиях можно рассматривать как таковую) и т.д. Может быть надеемся решить эти задачи сразу? Несмотря на то что все они взаимосвязаны и могут быть направлены на решение одной важнейшей задачи, они требуют разных воздействий на социоэкосистему. Может быть для России (как, впрочем, и для других стран) первостепенным является не экономический подъем и повышение уровня жизни (причем у разных народов и социальных групп приемлемый для них уровень будет разным), а вложение в развитие духовной стороны жизни общества (опять же осознавая, что она очень разнообразна и это один из ее положительных моментов, так же как био- или этноразнообразие). Без соответствующего воспитания (в широком смысле) нельзя говорить ни о каких добровольных ограничениях в том же потреблении, без чего не реализовать идеи устойчивого развития. В свою очередь, духовное развитие требует и подъема образования на всех уровнях, а далее необходима рациональная организация экономики, сосуществующей в гармонии с природой как естественной средой обитания человека и только потом как источник ресурсов и др. Конечно, никто не призывает к тому, чтобы ослабить внимание к экономи- ке, для всего нужна четкая материальная основа. На региональном уровне, проанализировав, например, фактическое положение жизни коренных и малочисленных народов Севера (прогрессирующая алкоголизация, все большая утрата родного языка и т.д.) и сравнив его с положением, характерным для русского народа в настоящее время, можно рассматривать в качестве пессимистического варианта развития ситуацию, которую мы имеем с этими малочисленными народами (как не прискорбно это признавать). Кстати, продолжая эту мысль, С. М. Мягков пишет: «Западным же экспертам полезно смотреть на социально-демографические процессы в России как на модель процессов, ожидающих страны Запада в недалеком будущем» [2001, с. 11]. Начата работа по созданию рабочего инструментария, позволяющего пользователю самому создавать картографические сюжеты, обращаясь к картографической основе и получая требуемые данные, например через сеть Интернет. Будут развиты средства математического моделирования, прежде всего направленные на разработку различных сценариев перехода регионов страны к моделям их устойчивого развития. Финальная стадия проекта, связанная с интеллектуализацией всей системы, позволит сформировать полномасштабную систему поддержки принятия решений. Именно совершенствование управления, в том числе и территориального (реальное, а не номинальное как сейчас, функционирование всех 7 федеральных округов в составе 30 — 40 субокругов и всей системы существующих единиц административно-территориального деления) — одна из первоочередных задач. Причем субокруга следует формировать на базе природных или природно-хозяйственных единиц, что, как писал Н. Н. Моисеев [1999], обеспечит природно-социально-территориальную структурированность государства и увеличит ресурс управления и естественную опору на биосферные системы, такие как ландшафты и биоценозы. Наконец, следует отметить, что формируемая система должна базироваться и на принципе мультимедийности (многосреднос-ти), что облегчает процесс принятия решений. Контрольные вопросы 1. Дайте определение атласной информационной системы. 2. Что такое гипермедийность АИС? 3. В чем проявляется блочность АИС? 4. Какие средства позволяют отображать временные изменения ха 5. Охарактеризуйте возможную роль экспертных систем в АИС. 6. Перечислите возможности мультимедиа, которые полезны при со 7. Дайте примеры создания многовариантных сценариев развития РАЗДЕЛ VI РЕАЛИЗАЦИЯ ГИС В РОССИИ ГЛАВА 19 ОТРАСЛЕВЫЕ ГЕОИНФОРМАЦИОННЫЕ ПРОЕКТЫ ГИС и геология Типы пространственных задач, которые решаются в геологии с применением геоинформационных систем, можно с достаточной степенью условности разделить на пять групп: 1. Создание всех видов собственно геологических и тематичес 2. Решение задач геологического прогнозирования. 3. Создание карт распределения геологической продукции и 4. Создание двумерных и трехмерных моделей подсчета запасов 5. Мониторинг различных аспектов геологической среды. Все эти виды задач различаются по целям, содержательному наполнению и используемому программному обеспечению. История вопроса.Еще совсем недавно процедура обработки на ЭВМ геологической информации проводилась с помощью, как минимум, четырех специалистов: геолога, геолога-математика, специалиста по системному анализу, программиста. Т. Лаудон отмечал: «Геолог интуитивно или обоснованно выявляет закономерности, которые описывает или представляет в виде геологической теории. Геолог-математик отыскивает возможности обобщенного выражения геологической мысли, где зависимости и логические связи представлены в абстрактном виде. Специалист по системному анализу определяет наилучший вариант применения математических методов и ЭВМ, а программист должен представить их в форме машинных программ». В обратном направлении эта цепочка работала при истолковании полученных машинных Результатов. Часто эта последовательность работала в режиме «испорченного телефона», поэтому первые опыты применения математических методов и ЭВМ в геологии приводили к настолько оторван- ным от реальной геологии выводам, что вызвали большое недоверие со стороны специалистов. Ситуация в корне изменилась с появлением и развитием персональных компьютеров. Этот уникальный аппарат стал незаменимым средством для работы геолога. Постоянное расширение программного обеспечения для ПК, дружественные интерфейсы позволяют каждому геологу стать грамотным пользователем ПК. Персональные компьютеры в руках геолога представляют собой надежный инструмент, который дает большие возможности как по созданию геологических отчетов, геологических карт, научных разработок, так и по решению различных модельных задач по теории рудообразования, геотектонике, стратиграфии, металлогении и т.д. Лозунг геологов: «Mente et malleo» («Мыслью и молотком») может быть дополнен словами «Et computer». Первые опыты пространственного анализа в геологии (тогда еще в геологии не существовало понятия геоинформационных систем) были проведены в начале 60-х годов XX в. В это время основное внимание исследователей уделялось вопросам разработки отдельных алгоритмов, поискам статистических закономерностей. Пространственный анализ сводился к построению карт изолиний и анализу поверхностей тренда. Это направление интенсивно развивалось в течение многих лет и в настоящее время представляет собой мощный инструмент решения сложных модельных задач, таких, например, как создание трехмерных моделей рудных тел и подсчет запасов полезных ископаемых в недрах. В 70 —80-х годах произошел бурный рост применения геоинформационных технологий для решения задач геологического прогнозирования. Для прогноза и оценки минерально-сырьевых перспектив отдельных территорий и регионов в качестве наиболее важного средства представления данных являлась бумажная геологическая карта. На основе карты создавались эвристические модели, в которых пространство использовалось в виде расстояний от определенных геологических объектов до месторождений полезных ископаемых. Таким образом, создавалось пространство свойств. Далее при анализе использовались различные математические подходы, такие как распознавание образов, классификации и т.д. На основе проведенного анализа создавалась новая карта, на которой показывались прогнозные площади, перспективные для открытия месторождений полезных ископаемых. В настоящее время это направление развивается в рамках использования полномасштабных ГИС. В конце 80-х — начале 90-х годов появились компьютерные карты распределения различной геологической продукции или информации по определенным регионам. Чаще всего при построении таких карт использовались минералоресурсные показатели: запасы полезного ископаемого, добыча и др. Также в эти годы геоин- формационные технологии стали использоваться для создания собственно геологических карт и основанных на них различных производных тематических карт. Это направление интенсивно развивается как в плане создания цифровых моделей карт, так и их подготовки для тиражирования. С этого, наиболее важного направления использования ГИС-технологий в геологии, начнем свое рассмотрение. Геологическая съемка.Проведение геологических съемок имеет следующие цели: 1. Геологическое изучение района и составление геологической 2. Выявление поисковых признаков и поисковых критериев всех 3. Составление карты полезных ископаемых и карт распростра 4. Сбор и систематизация информации о геологических услови 5. Прогноз мест возможной локализации месторождений по В состав подготовительных работ входит изучение и критический анализ фондовых и опубликованных текстовых и картографических материалов. В этот этап входит также создание текстовых файлов с необходимой описательной информацией, проводится сбор готовых цифровых карт по предшествующим работам и создание цифровых и электронных карт фактического материала. На карту фактического материала выносятся по координатам или визуально на экране монитора важнейшие метрические классы объектов — точечные, линейные и площадные: обнажения коренных пород, площади и линии детального изучения разрезов геологических подразделений, горные выработки, буровые скважины, профили геофизических наблюдений, пункты находок ископаемых остатков фауны и флоры, пункты археологических находок, источники и колодцы, пункты отбора проб для определения радиологического возраста, химического и минералогического состава горных пород и руд, их физических свойств и т.д. Содержательная информация по результатам ранее проведенного бурения, изучению коллекций шлифов и образцов горных пород, руд и органических остатков, результатов палеонтологических и геохронологических исследований по будущему району работ и смежным территориям привязывается в виде атрибутивных характеристик к соответствующим точечным, линейным и площадным объектам и может быть в любой момент востребована в ГИС. Создается комплекс цифровых баз данных поисковой изученности района работ. Важное значение при производстве современных геолого-съемочных работ приобретает дешифрирование материалов аэро- и космической съемки (МАКС). В настоящее время их дешифрирование производится традиционными методами, результаты дешифрирования переводятся в цифровую форму с помощью дигитайзера. Растровая основа, привязанная к системе координат карты, дешифрируется вручную на экране ПК. При необходимости исходное изображение предварительно подвергается цифровой фильтрации или другим процедурам обработки. Цифровые карты геофизических полей традиционно обрабатываются для пересчета полей, выделения аномалий, остаточного поля и т.д. Результаты дешифрирования представляются в виде самостоятельных слоев в ГИС. Полевые исследования осуществляются путем проведения поисково-съемочных и поисковых маршрутов, аэровизуальных наблюдений, геофизических, геохимических, геоморфологических, гидрогеологических, петрографических, палеонтологических, стратиграфических и других исследований, проходки и геологического изучения буровых скважин и горных выработок, выполнения различных видов опробования и полевых аналитических работ. Расположение маршрутов и точек наблюдения определяется в зависимости от рельефа, геологической обстановки и данных геофизики, геохимии и др. Все точки геологических, геоморфологических и других наблюдений, места отбора шлиховых и других проб, мелкие горные выработки и мелкие скважины привязываются глазомерно или с помощью систем глобального позиционирования (см. гл. 12). Информация для создания геологических карт собирается при полевых исследованиях и последующей обработке собранного каменного и другого материала. Рассмотрим с позиций формализованного представления данных процесс геологической съемки. Геологическая карта создается на основе топографической карты соответствующего масштаба. В качестве точечного объекта при геологической съемке выступает точка наблюдения или обнажение, которые являются частью геологического маршрута. Другим видом точечного объекта является искусственное обнажение: буровые скважины, поверхностные и подземные горные выработки. Географические координаты точки определяются, как правило, по топографической карте или инструментально с помощью ГСП. Обнажение получает соответствующий номер, который служит идентификатором, объединяющим позиционную и атрибутивную составляющие. На основе собранной информации в точке формируются атрибутивные характеристики, в структуре которых присутствуют название горной породы, ориентировка ее в пространстве, наличие границы геологического тела и т.д. В точке наблюдения производится отбор каменного материала для дальнейшего изучения вещества горной породы петрографическими, минералогическими, химическими, спектральными и другими методами. Эти исследования производятся позже и по их результатам создаются новые содержательные характеристики. На основе точек формируется линия. Линия при геологической съемке отвечает границам геологических тел (или на языке геологов — контактам) и тектоническим нарушениям. Атрибутивная характеристика линии содержит информацию о типе границы и другим показателям. Замкнутые линии границ геологических тел формируют полигоны, отвечающие площадям геологических тел в установленных границах. Формализованное определение геологического тела: часть статического геологического пространства, ограниченного геологической границей [Геологические тела, 1986]. Геологические тела имеют самые разнообразные объемные формы: пласты, штоки, но чаще их форма неправильная. На двухмерной геологической карте отражаются площади, полученные в результате пересечения геологического тела топографической поверхностью данной местности. Сформированные полигоны в ГИС объединяются в слои. Слоевая структура геологической карты определяется возрастом геологических тел. Наиболее древние геологические тела образуют нижние слои, более молодые — верхние. Таковы в общих чертах формализованные с позиций ГИС представления о геологической съемке. Многочисленная геологическая информация, получаемая в результате полевых геолого-съемочных работ, систематизируется и обобщается в виде большого количества баз данных. На ее основе, прежде всего, создаются геологические карты. В конце 90-х годов в ряде европейских стран все большее применение стало находить составление цифровой карты непосредственно в поле. Были созданы специальные полевые компьютеры, которые имеют надежную пылевлагозащищенную конструкцию. Полевое назначение компьютера потребовало специфических изменений в его конфигурации. Компьютер можно носить на поясе. Он имеет хороший цветной дисплей, который позволяет видеть изображения на солнечном свете. В зависимости от интенсивности солнечного света изменяется контрастность изображения. В качестве программного средства в одном из полевых компьютеров используется система GISPAD-16-бит под Windows. Система снабжена набором карт, служащих подложкой для создания цифровой модели. Цифровые топографические карты легко импортируются. Основой является реляционная СУБД Paradox и собственное обеспечение, которое сохраняет необходимое количество векторных объектов. Пользователь-геолог может рисовать векторные объекты (точки, линии, полигоны) в картографическом окне с использованием пера и определять их атрибутивные характеристики через стандартные входные каналы. Моделирование данных и изображение объектов производится с помощью редактора объект-класс, который встроен в GISPAD. GISPADсвязан с системой спутникового определения координат DGPS/GPS, а встроенный интерфейс позволяет выводить точку геологического наблюдения непосредственно на электронной карте, поэтому полевой геолог сразу определяет свое положение на местности. Материалы предыдущих геологических исследований содержатся в базе данных в виде метатаблиц. Эти данные импортируются из центральной базы данных. Интерфейс пользователя дружествен полевому геологу и позволяет работать с четырьмя типами данных: буровыми скважинами, геологическими обнажениями, геологическими разрезами и некоторыми геологическими сведениями, а также стандартными данными, которые позволяют геологу в поле решать основную задачу — картографировать точки наблюдения, которые отсутствуют в центральной базе данных. В комплектацию компьютера входит цифровая фотокамера. Геологические карты.Одной из основных задач использования ГИС-технологий является составление цифровой модели (ЦМ) геологической карты с последующим выводом ее на печатающее устройство в виде традиционной карты. Этот вид работ является одной из самых сложных геологических задач, решаемых с помощью ГИС. Практические выгоды от использования цифровых геологических карт: полная систематизация имеющегося картографического материала с возможностью оценки изученности площади; доступ к программным средствам, автоматизирующим рутинные операции по составлению карт и вплоть до увязки соседних профилей, горных и буровых выработок, дешифрирования аэро- и космоснимков; возможности оверлея различных слоев; редактирования и внесения правки при появлении новых данных (в идеале при наличии развитых программ интерполяции требуется лишь пополнение слоя фактического материала). Кроме этого, обеспечивается возможность использования геологической графики в любом виде, быстрой смены легенды и раскраски карт, изменения значков на карте; упрощается издание карт; создание производных тематических карт; реализация стандартных операций со слоями: сложение, объединение, анализ различий; упрощается переход от масштаба к масштабу, генерализация крупномасштабных карт; реализация пространственных запросов к базам данных; измерение площадей и расстояний на картах, пространственных сопоставлений; прогнозирования и др. В иерархии масштабов геологических карт можно выделить государственные геологические карты масштабов 1: 1 000 000 и 1:200 000, более крупномасштабные карты 1:50 000, 1: 10 000 и геологические планы 1: 5 000, 1: 2000, 1: 1000. Как правило, большинство геологических карт в настоящее время по-прежнему создается в ручном режиме на бумажном носителе с последующей оцифровкой. Ключевыми при переводе процесса геологического картографирования в автоматизированный режим с применением компьютерных технологий остаются проблемы иерархии, структурирования и формализации геологической информации. Базы данных, полученные в процессе геологической съемки, чаще всего по-прежнему сохраняются на бумажных носителях: в полевых дневниках, в различных журналах опробования и т.д. и используются позже, при составлении цифровой модели карты. Результатом геологической съемки являются текст геологического отчета, комплект обязательных и специальных карт и других графических приложений, текстовые приложения, отдешифри-рованные и аннотированные аэрофотоснимки и космоснимки. Из других графических приложений необходимо представлять геологические разрезы, документацию и зарисовки керна буровых скважин, документацию и зарисовки горных выработок (канав, шурфов, подземных горных выработок). Из обязательных карт представляются геологическая карта, карта полезных ископаемых, карта закономерностей размещения и прогноза полезных ископаемых, карта фактического материала по всем видам проведенных работ. Все эти документы начинают представляться в цифровом виде. Государственные геологические карты. К числу наиболее компьютеризированных процессов геологического картографирования следует отнести создание государственных геологических карт масштабов 1: 1 000 000 и 1: 200 000 [Создание Госгеолкарты-200, 1999; Создание Государственных..., 2001]. В технологии создания геологических карт объединяются: карта-основа, база первичных геологических данных, база регистрационных данных по месторождениям полезных ископаемых, ЦМ геофизических и геохимических полей, более ранние геологические карты и т. д. Предусматривается обязательное использование при составлении государственных геологических карт материалов дистанционного зондирования. Оптимальная совокупность этих материалов, а также результатов их обработок и интерпретации, представленная в цифровом и аналоговом видах, составляет основу госгеолкарт. Главные задачи, которые решаются при этом, заключаются в создании, поддержке и актуализации первичных баз данных, а также словарей, классификаторов, моделей геологических объектов и т.д. Важной задачей является создание серийных легенд геологических карт. При разработке легенды системность организации информации достигается путем ранжирования картографических объектов на событийно-временной основе. В содержательном плане легенда состоит из геологического, тектонического, ми- нерагенического, гидрогеологического, минералоресурсного и других блоков. Последний этап в создании государственных геологических карт — это подготовка карты к изданию, которая включает импорт цифровых моделей в среду ГИС, их редактирование и оформление, экспорт карты в издательскую систему. В настоящее время в геологических работах применяются в основном программные продукты компании ESRI, Inc.: Arclnfo, ArcView и Maplnfo. Некоторые отечественные программные продукты также достаточно широко применяются при создании ЦМ геологических карт. В области ГИС в качестве примера можно назвать комплекс GeoDraw, GeoGraph ЦГИ ИГРАН, главные преимущества которого — функциональность и невысокая цена. Определенным успехом пользуются отечественные системы ГИС ИНТЕГРО и ГИС ПАРК. Последняя работает под управлением устаревшей операционной системы MS DOS. Это вызывает низкую стабильность работы, что связано с особенностями режима работы MS DOS в Windows. Кроме того, затруднен обмен данными с другими приложениями Windows, что вызвано, в частности, другой кодировкой кириллицы. В ГИС ПАРК отсутствуют драйверы для современных плоттеров, что не дает возможности полностью использовать функциональные возможности последних моделей (такие, как повышенное разрешение, цветовая палитра, и т.д.) Делаются попытки создания автоматизированных систем при решении задач геологической картографии. Эти системы помогают в реализации ряда технологических цепочек, таких, как создание фундаментальных баз первичных геологических данных, описание легенд госгеолкарты, поддержка информационных стандартов, собственно построение госгеолкарты. Однако в целом создание государственной геологической карты является творческим процессом и в основном ведется в интерактивном, диалоговом режиме. Тематические карты. ЦМ тематических карт создаются на основе геологических карт соответствующего масштаба и имеют задачей исследование определенных закономерностей развития земной коры или минералоресурсной базы для определенной территории. Среди тематических карт можно выделить структурно-форма-ционные, литолого-фациальные, тектонические, гидрогеологические, металлогенические и минерагенические, другие виды карт. Создание таких карт не является самоцелью, вся введенная информация в дальнейшем должна использоваться для решения различного типа прогнозных задач, определения перспектив того или иного района в отношении определенного типа полезных ископаемых или для выводов о закономерностях развития земной коры. Геолого-экономические карты. Наибольшее развитие среди тематических карт получили геолого-экономические карты. В общем виде цифровые модели карт состоят из следующих слоев [К. Г. Ста-феев, 2002]: 1. Минерагенический: размещение минерагенических зон и руд 2. Минералоресурсный: размещение месторождений с указа 3. Промышленный: размещение горно-добывающих и перера 4. Административно-экономическое районирование: вся инфор 5. Инфраструктурный: пути сообщения, магистральные трубо Цифровые модели геолого-экономических карт как составных частей информационно-аналитических систем являются важным элементом минералоресурсной экономической оценки различных по масштабу территорий, начиная от ЦМ геоэкономической карты мира в целом. Далее идут ЦМ геолого-экономических карт Российской Федерации, федеральных округов и экономических районов, отдельных субъектов федерации, ЦМ геолого-экономических карт горно-промышленных районов. В настоящее время накоплен определенный опыт по созданию цифровых геолого-экономических карт, которые уже хорошо зарекомендовали себя в качестве мощного средства минералоресурсного анализа. Цифровые геолого-экономические карты обладают большими преимуществами перед их бумажными аналогами. Применение компьютерных технологий при создании геолого-экономических карт позволяет оперативно учитывать меняющуюся экономическую обстановку и вносить необходимые изменения (т.е. цифровая модель карты является динамической системой). Появляется возможность количественного моделирования с использованием пространственных связей объектов и их экономических характеристик. Используя многовариантные модели, можно выбрать оптимальный вариант планирования, что значительно облегчает принятие управленческих решений, дающих определенный экономический эффект. Специфической особенностью ЦМ геолого-экономических карт является большое количество внедренных объектов: различных Диаграмм, графиков, таблиц. Как правило, функциональные возможности используемых ГИС недостаточны для создания необхо- димой деловой графики. Графические и табличные внедренные объекты создаются в других системах (например, Microsoft Excel) и затем экспортируются в систему ЦМ геолого-экономической карты с использованием обменных форматов. Карты изолиний, площадные и объемные модели подсчета запасов полезных ископаемых. В этой области применения ГИС-техно-логий в геологии можно выделить два класса задач поверхностного и объемного моделирования: простые и сложные. К группе простых геологических задач относится проблема моделирования поверхности, построенной по данным наблюдений по нерегулярной сетке точек. В качестве показателей здесь могут выступать химические составы горных пород, абсолютные отметки почвы или кровли геологических тел, высота, глубина залегания, температура, давление и др. Обычно поверхность представляется в виде функции от двух переменных: P=f(x,y)9где Р — значение показателя в точке с координатами (хиу). При компьютерной обработке данных создается цифровая модель (ЦМ) поверхности, в которую входит форма представления исходных данных и способ, позволяющий вычислять значение функции в заданной точке путем интерполирования, аппроксимации или экстраполяции. Среди основных способов пространственного моделирования можно выделить: интерполяцию на основе триангуляции Делоне, интерполяцию с помощью аналитических сплайнов (Х)-сплайнов), обобщенную средневзвешенную интерполяцию, кусочно-полиномиальное сглаживание, кригинг. В качестве программного обеспечения для решения задач пространственного моделирования используются специальные разработки типа MAG, SURFER и др. Ряд полномасштабных ГИС имеют специальные модули для построения карт изолиний и поверхностного тренда. К группе сложных задач относятся подсчеты запасов полезных ископаемых и другие информационно-аналитические задачи, которые в силу своего пространственного характера могут решаться с помощью ГИС. Однако специфика решения этих задач требует создания специальных систем, которые иногда называют горно-геологическими информационными системами. Последние по функциональным задачам имеют много общего с традиционными ГИС, но имеют также ряд функциональных особенностей. К их числу принадлежит изначальная ориентировка на решение объемных задач, поскольку информация по строению месторождений в недрах имеет трехмерный характер. Далее в этих системах широко применяются комплексы методов математического моделирования для числового описания строения рудных тел. В ГИС этого профиля имеется ряд специальных модулей, необходимых для создания промежуточных крупномасштабных планов и разрезов в автоматическом режиме, для решения специальных задач подсчета объемов и запасов, создания календарного планирования и оптимизации добычи. Предусматривается также возможность визуализации динамических моделей для наглядного представления результатов работ. Этот вид работ является чрезвычайно важным в условиях рыночной экономики, когда величина запасов на месторождениях становится переменной и зависит от цены на металл или другую товарную продукцию. Поэтому важно иметь в распоряжении объемную ЦМ месторождения, чтобы оперативно учитывать колебания конъюнктуры по тому или другому виду минерального сырья. Установлено, что увеличение стоимости добычи на 10— 15 % обусловлено недостаточной точностью оконтуривания рудных тел при подсчете запасов. Еще на 10— 15 % стоимость возрастает из-за разубоживания руды в процессе добычи, которое происходит также из-за неправильного оконтуривания рудных тел. Целый ряд зарубежных и отечественных горно-геологических систем применя
Популярное: Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (644)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |