Мегаобучалка Главная | О нас | Обратная связь


Температурные диапазоны выкипания нефтепродуктов.



2018-07-06 842 Обсуждений (0)
Температурные диапазоны выкипания нефтепродуктов. 0.00 из 5.00 0 оценок




Бензин 35 – 190 °С, лигроин 110 – 230 °С, керосин 140 – 300 °С, газойль 236 – 330 °С, соляр 286 – 380 °С, масла 320 – 500 °С. При смешении фракций получают топлива для различных видов техники.

Лигроин и керосин – реактивное топливо для самолётов.

Керосин и газойль – лёгкое дизельное топливо для автомобилей.

Газойль и соляр – дизельное топливо для тракторов.

Соляр – для тепловозов и судовых двигателей.

 

 

Рис. 2.1.Комплексная атмосферно-вакуумная установка переработки нефти:

1 – трубчатая печь; 2 и 5 – ректификационные колонны; 3 – холодильник;

4 – конденсатор-газоотделитель; 6 – теплообменник; 7 – насос;

8 – испарительная колонна

 

 

 

Рис. 2.2.Схема ректификационной колонны и её принцип действия:

1 – приспособление для подачи водяного пара; 2 – труба (ввод паров нефти

и её неиспарившейся части); 3 – приспособление для ввода орошения;

4 – труба для отвода лёгкокипящих фракций с испарившимся оросителем;

5 – металлические тарелки; 6 – отверстия в тарелках;

7 – колпачки с прорезями; 8 – сливная трубка

При прямой перегонке нефти среднего состава можно получить 25 % бензиновых фракций, 10 % керосиновых, 35 % дизельных, 20 % базового масла и около 10 % мазута.

Испаряемость бензина– это одно из главных его качеств. Жидкое топливо горит только тогда, когда оно преобразовано в газообразное состояние. Для оценки испаряемости выполняют фракционную (фракция – часть) разгонку и определяют температуру, при которой испаряются 10, 50 и 90 % топлива по объему (t10 %, t50 %, t90 %.).

В таблице 2.1 приведен фракционный состав бензинов, которые согласно их испаряемости разделены на 5 классов (ГОСТ Р. 51105–97).

 

Таблица 2.1

Испаряемость бензинов

Показатели Классы
Фракционный состав: t10 % t50 % t90 %

 

Бензин, испаряемость которого соответствует первому классу, рекомендуется для южных районов России. Второму и третьему классу – для центральных районов, четвертому – для северных, пятому – для крайнего севера и Арктики.

На рис. 2.3 представлены графики разгонки бензина и дизельного топли- ва (ДТ).

По величине температуры, при которой испаряется 10 % топлива (t10 %), определяют пусковые качества бензина. При пуске двигателя в первую очередь воспламеняются от искры легкие фракции топлива.

По значению температуры, при которой испаряется 50 % топлива (t50 %), определяют качествопротекания рабочего процесса двигателя, а также время его прогрева, динамику разгона автомобиля.

По величине температуры t90 % оценивают количество тяжелых углеводородов. В случае их неполного сгорания, они способствуют образованию нагара и разжижению моторного масла.

Точки 1 и 6 характеризуют начало кипения или перехода из жидкой фазы бензина и ДТ в газообразную фазу. По точкам 2 и 7 оценивают пусковые качества бензина и ДТ. Точка 3 характеризует качество бензина (скорость прогрева двигателя, его динамику разгона). По точкам 4, 5 и 8 оценивают наличие в топливе тяжелых фракций [22].

 

 
 

Рис. 2.3. Графики разгонки бензина и дизельного топлива

 

Основу любого органического вещества составляет углеродный скелет.
Он может быть в виде цепи (разветвленной или неразветвленной) или кольца (циклический скелет). К углеродному скелету присоединяются атомы водорода, образуя углеводородную молекулу [24, 58].

Углеводороды, входящие в состав нефти, относят к парафиновым, нафтеновым и ароматическим.

Общая формула углеводородов парафинового ряда (алканы) имеет вид СnH2n + 2. Они представлены в нефти большим разнообразием: от газообразных (СН4 – метан, С2Н6 – этан), жидких (С8Н18 – октан) до высокомолекулярных твердых парафинов включительно (С18Н38 – актодекан). Газообразные содержат от 1 до 4 атомов углерода, они обладают высокой детонационной стойкостью. Соединения, содержащие от 5 до 16 атомов углерода – жидкие вещества, после гексадекана (С16Н34) – твердые вещества.

Нафтеновые углеводороды (цикланы) имеют формулу Сn H2n и представлены в виде кольца с пятью атомами углерода С5 Н10 (циклопентан) и с шестью атомами углерода (С6Н12 циклогексан). Циклическое строение напоминает вид «круговой обороны», а молекулы данного типа обладают высокой детонационной стойкостью, являются желательными для бензинов и зимних сортов дизельных топлив.

Ароматические углеводороды (арены) имеют формулу СnН2n-6, к ним относят бензол С6Н6 в виде кольца (шестигранник) с тремя одинарными связями, чередующимися двойными. К ароматическим углеводородам относят толуол C7H8, бутилбензол С10Н14. Они обладают высокой детонационной стойкостью, рекомендуются для топлив бензиновых двигателей.

В процессе прямой перегонки нефти получается 15 – 25 % бензина с низким октановым числом (ОЧ ≈ 60). Для повышения ОЧ применяют: современные технологии переработки нефти (крекинг-процесс, риформинг), высокооктановые добавки и присадки. В процессе крекинга крупные молекулы расщепляются на мелкие, при этом повышается ОЧ. Крекинг происходит при давлении Р = 2 – 5 МПа и температуре t = 450 – 500 0С. Выход высокооктанового бензина составляет примерно 50 %.

Процесс крекинга протекает по следующей схеме.

Например, из гексадекана (С16Н34) образуется октан (С8Н18), из него бутан (С4Н10) и далее этилен (С2Н4).

 
 

 


В процессе переработки нефти применяют риформинг (изменяется структура молекулы). Например, цепочное строение молекулы преобразуется в кольцевое.

Процесс расщепления молекул тяжёлых углеводородов называют крекингом. Крекинг осуществляют путём нагрева обрабатываемого сырья до определённой температуры без доступа воздуха, без катализатора (термический крекинг)или в присутствии катализатора (каталитический крекинг). Крекинг позволил увеличить выход бензиновых фракций из нефти до 50 – 60 % против 20 – 25 %, получаемых прямой перегонкой.

Термический крекинг происходит при температуре 470 – 540 °С и давлении 2 – 5 МПа. Вместе с расщеплением углеводородов при термическом крекинге протекают процессы синтеза и в результате создаются высокомолекулярные соединения, а также появляются отсутствующие в природной нефти химически неустойчивые непредельные углеводороды. Эти два фактора являются основным недостатком термического крекинга и причиной замены его другими процессами переработки нефти.

К таким процессам относится каталитический крекинг, который протекает при тех же температурах, что и термический крекинг, но при давлении, близком к атмосферному, и в присутствии катализатора. В качестве катализатора наибольшее распространение получили твёрдые алюмосиликатные катализаторы, в состав которых входят окись кремния и окись алюминия. Основной реакцией каталитического крекинга также является расщепление сложных и больших молекул на более лёгкие с меньшим числом атомов углерода.

Каталитический крекинг осуществляют по различным схемам: с неподвижным слоем катализатора, подвижным сферическим катализатором и с пылевидным, или микросферическим, катализатором.

Гидрокрекинг(деструктивная гидрогенизация) – разновидность каталитического крекинга, проводимого в атмосфере водорода при давлении 20 – 30 МПа и температуре 470 – 500 °С. В этом процессе образующиеся непредельные углеводороды гидрируются и превращаются в предельные. Кроме того, имеющиеся в сырье сернистые и кислородные соединения, расщепляясь, реагируют с водородом с образованием сероводорода и воды. Сероводород отмывается слабощелочной водой. В результате можно получать высококачественное топливо из нефтяных остатков, углеводородных смол и других веществ.

В промышленных условиях используют и некоторые другие термические процессы переработки. Например, при нагревании нефтяных остатков до 550 °С при атмосферном давлении происходит образование кокса и получаются жидкие углеводороды, которые можно использовать в качестве топлив. Далее нагревание нефти до температуры 670 – 800 °С (пиролиз) ведёт к значительному образованию газообразных углеводородов (этилен, пропилен), из которых путём нефтехимического синтеза получают полиэтилен, полипропилен. В процессе пиролиза образуются и жидкие углеводороды, в основном ароматические.

Наиболее перспективным является каталитический риформинг. Сущность его заключается в ароматизации бензиновых фракций в результате преобразования нафтеновых и парафиновых углеводородов в ароматические. Нафтеновые углеводороды теряют атом водорода и превращаются в ароматические (реакция ароматизации), парафиновые в результате реакции изомеризации (циклизации) также образуют ароматические углеводороды, отщепляя водород. Одновременно тяжёлые углеводороды расщепляются на более мелкие. Образующиеся при этом непредельные углеводороды гидрируются.

Основным катализатором является алюмоплатина – платины 0,1 – 1,0 %. Этот катализатор позволяет осуществлять реформирование при температуре 460 – 510 °С и давлении 4,0 МПа без регенерации в течение нескольких месяцев. Процесс называется платформинг.

Сырьё (бензиновая фракция прямой перегонки) нагревается в теплообменниках и нагревательной печи до 380 – 420 °С и поступает в реактор, где под давлением 3,5 МПа и при воздействии алюмокобальтомолибденового катализатора подвергается гидроочистке. Очищенное сырье после освобождения от сероводорода, углеводородных газов и воды нагревается в печи до 500…520 °С и поступает в реакторы, где под давлением выше 4,0 МПа происходит его реформирование.

Вид топлива зависит от количества углерода в молекуле. Если углерода в молекуле до 4 – это газ, от 4 до 16 – жидкость, более 16 – масла, парафины, твёрдые вещества.

Фракции бензинов выкипают при температуре от 40 до 190 °С и содержат углеводороды от С5Н12 до С11Н24.

На рис. 2.4 показан крекинг-процесс нефти и изменение от температуры ее составляющих (парафиновых 1, нафтеновых 2, ароматических 3).

 

 

Рис. 2.4. Крекинг-процесс нефти:

1 – парафиновые углеводороды; 2 – нафтеновые; 3 – ароматические

 

При повышении температуры от 100 до 500 0С (крекинг-процесс для грозненской нефти) парафиновые углеводороды расщепляются и их количество
с 60 % уменьшается до 18 %. Нафтеновые углеводороды с 35 % увеличиваются до 70 %, а ароматические с 5 % увеличиваются до 12 %.

На этом эффекте основано получение высокооктановых бензинов. При высокой температуре осколки парафиновых и других углеводородов приобретают кольцевое строение.

Парафиновые углеводороды (30 – 50 %) имеют высокую самовоспламеняемость, из них готовят дизельные топлива. Нафтеновые углеводороды (25 – 75 %) и ароматические (5 – 20 %) обладают детонационной стойкостью (для бензинов).

Примеси нефти. Среди примесей наибольшее влияние на качество топливосмазочных материалов оказывают сернистые и кислородные соединения. Эти соединения оказывают многостороннее влияние на эксплуатационные характеристики двигателей и механизмов и, прежде всего, на их коррозионный износ. Для удаления примесей полуфабрикаты топлив и масел подвергают очистке.

Очистка серной кислотой. Применяется для удаления непредельных углеводородов, асфальтосмолистых веществ, азотистых и сернистых соединений, нафтеновых кислот. Очистке 96 – 98 % раствором серной кислоты подвергают масла. Различают кислотно-щелочную и кислотно-контактную очистки. При кислотно-щелочной очистке после реакции с кислотой полуфабрикат нейтрализуют натриевой щелочью с промывкой водой и просушиванием паром. Осадок в виде смолистой массы (кислого гудрона) удаляется.

Щелочная очистка (очистка натриевой щелочью). Применяется для удаления из нефтяных дистиллятов кислородных соединений (нефтяных кислот, фенолов), сернистых соединений (сероводорода, меркаптанов, серы) и для нейтрализации серной кислоты и продуктов её взаимодействия с углеводородами (сульфокислот, эфиров серной кислоты), остающихся в нефтепродукте после его сернокислотной очистки.

Образующиеся вещества растворяются в воде и удаляются из очищенного продукта вместе с водным раствором щелочи. Очистка щелочью используется при производстве бензинов, дизельных топлив и некоторых видов масел.

Селективная очистка (очистка при помощи растворителей) основана на различной растворяющей способности некоторых веществ в отношении углеводородов различного строения и неуглеводородных примесей. Применяется для очистки масел. Удаляются асфальтосмолистые соединения, полициклические углеводороды, часть сернистых соединений, непредельные углеводороды.

После селективной очистки (фенолом, фурфуролом, крезолом) получают рафинат (очищенное масло) и экстракт (растворитель с извлеченными из масла веществами). После удаления растворителя экстракт идет в качестве добавки в трансмиссионные масла, а рафинат - на приготовление масел.

Депарафинизация. Применяется для удаления углеводородов с высокими температурами застывания, в основном парафинового ряда, так как последние при охлаждении переходят в кристаллическое состояние. Депарафинизации подвергают дизельные топлива и масла.

Один из главных методов депарафинизации - вымораживание, заключающееся в охлаждении полуфабриката до температуры застывания, после чего кристаллы отделяются на фильтрах.

Гидроочистка. Применяется для удаления сернистых, азотистых и кислородных соединений путём восстановления этих соединений водородом при повышенных температурах и давлении в присутствии катализатора в газообразные продукты (сероводород, аммиак) и воду, которые легко удаляются. Гидроочистке подвергают дизельные топлива и моторные масла для удаления серы.

Адсорбционная очистка (контактная очистка, очистка отбеливающими землями). Некоторые высокопористые вещества (адсорбенты) способны удерживать на поверхности нежелательные примеси, содержащиеся в нефтепродуктах. Эта очистка распространена при производстве масел и дизельных топлив. Данным способом удаляют смолы, нафтеновые кислоты, кислородосодержащие соединения, сульфокислоты, остатки минеральной кислоты и селективного растворителя. В качестве адсорбентов используют природные глины, силикагель, активированную окись алюминия.

Все перечисленные выше способы очистки применяют для улучшения качества нефтепродуктов, их эксплуатационных свойств. В зависимости от требования к качеству нефтепродукт подвергают очистке одним способом, или двумя, или многими, применяя их в той или иной последовательности.

В таблице 2.2 приведены основные виды эксплуатационных материалов, используемые в двигателях внутреннего сгорания автомобилей, тракторов и другой технике.

Таблица 2.2



2018-07-06 842 Обсуждений (0)
Температурные диапазоны выкипания нефтепродуктов. 0.00 из 5.00 0 оценок









Обсуждение в статье: Температурные диапазоны выкипания нефтепродуктов.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (842)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)