Модель МакКаллока - Питса
Нейрон является единицей обработки информации в нейронной сети. Из приведенных выше рассуждений следует, что каждый нейрон суммирует с соответствующими весами сигналы, приходящие от других нейронов, выполняет нелинейную решающую функцию и передает результат связанным с ним другим нейронам. В простейших моделях нейронов выходной сигнал принимает двоичные значения: 0 или 1. Значение 1 соответствует превышению порогового уровня, значение 0 – в противном случае. Одна из первых моделей нейрона была предложена Дж. МакКаллоком и У. Питсом в 1943 году [4]. Структурная схема этой модели представлена на рис. 1.3. Сигналы xj на входе синапсов j (j = 1,2,…,N), связанные с нейроном i, суммируются с учетом соответствующих синаптических весов wij (первый индекс относится к нейрону, а второй к синапсу), после чего результат сравнивается с пороговым значением wi0 . Пороговое значение отражает увеличение или уменьшение входного сигнала, подаваемого на функцию активации, которая ограничивает амплитуду выходного сигнала. Выходной сигнал нейрона yi определяется при этом зависимостью
Рис. 1.3 Модель нейрона МакКаллока-Питса Аргументом функции выступает суммарный сигнал, формируемый сумматором искусственного нейрона.
Коэффициенты Использование порогового сигнала Модель МакКаллока – Питса – это дискретная модель, в которой состояние нейрона в момент (t+1) рассчитывается по значению его входных сигналов в момент времени t. Функция f(ui) называется функцией активации. В модели МакКаллока – Питса это пороговая функция вида:
В общем случае эта функция активации описывается следующим выражением:
где b и c – некоторые постоянные. На практике чаще всего используют две пары постоянных b и c: первая (-1,1); вторая – (0,1). Первая пара коэффициентов определяет так называемую симметричную пороговую функцию, вторая – смещенную. Персептрон Ф. Розенблатт в 1958 году ввел понятие персептрона как первой модели обучения с учителем [4].Обучение персептрона требует наличие учителя и состоит в таком подборе весов Наиболее популярный метод обучения персептрона, называемый правилом персептрона, состоит в подборе весовых коэффициентов по следующему алгоритму: · при первоначально выбранных (как правило, случайным образом) значениях весов · если · если · если По завершении уточнения весов предоставляются очередной обучающий вектор x и связанное с ним значение Сигмоидальный нейрон Нейрон сигмоидального типа имеет структуру, подобную модели МакКаллока–Питса, с той разницей, что функция активации является непрерывной и может быть выражена в виде сигмоидальной униполярной или биполярной функции [4].Структура нейрона представлена на рис. 1.4. Входные сигналы
Аргументом функции выступает суммарный сигнал
Рис. 1.4 Модель сигмоидального нейрона Униполярная функция, как правило, представляется формулой
тогда как биполярная функция задается в виде (1.11) или (1.12):
Графики сигмоидальных функций при k=1 представлены на рис. 1.5. Отметим, что, как правило, современные компьютеры вычисляют функцию гиперболического тангенса быстрее, чем логистическую. Другое преимущество функции гиперболического тангенса состоит в том, что она изменяется в диапазоне от –1 до +1. Часто бывает необходимо нормировать обучающий набор данных таким образом, чтобы среднее значение было равно 0 при единичном стандартном отклонении. Такая нормировка возможна только с функцией активации, которая способна принимать отрицательные значения. И наконец, нечетная функция, такая, как гиперболический тангенс, обеспечивает более быстрое обучение, чем несимметричная логистическая функция. В этих формулах параметр k подбирается пользователем. Его значение влияет на форму функции активации. При малых значениях k график функции достаточно пологий, по мере роста значения kкрутизна графика увеличивается.
Рис. 1.5 Графики сигмоидальных функций: При k → ∞ сигмоидальная функция превращается в пороговую функцию, идентичную функции активации персептрона. На практике чаще всего для упрощения используется значение k =1. Важным свойством сигмоидальной функции является ее дифференцируемость. Для униполярной функции имеем
тогда как для биполярной функции
И в первом, и во втором случае график изменения производной относительно переменной x имеет колоколообразную форму, а его максимум соответствует значению x=0. Сигмоидальный нейрон, как правило, обучается с учителем. При обучении с учителем предполагается, что помимо входных сигналов, составляющих вектор x, известны также и ожидаемые выходные сигналы нейрона При обучении с учителем производится минимизация целевой функции, которая для единичного обучающего кортежа <x, d>i-го нейрона определяется в виде
где
Применение непрерывной функции активации позволяет использовать при обучении градиентные алгоритмы. Нейрон типа WTA В соответствии с принципами функционирования биологических нейронов созданы различные математические модели, которыми в большей или меньшей степени реализуются свойства природной нервной клетки. Обобщенная схема, составляющая основу большинства таких моделей, восходит к представленной на рисунке 1.3 модели МакКаллока-Питса, содержащий сумматор взвешенных входных сигналов и нелинейный блок выработки выходного сигнала нейрона, функционально зависящего от выходного сигнала сумматора. Однако, существуют и другие модели нейронов существенно отличающиеся от модели МакКаллока–Питса. Рассмотрим более подробно нейроны типа WTA(winnertakesall – победитель получает все) [4].Эти нейроны имеют входной модуль в виде стандартного сумматора, рассчитывающего сумму входных сигналов с соответствующими весами
Группа конкурирующих между собой нейронов получает одни и те же входные сигналы Проигравшие нейроны не изменяют свои весовые коэффициенты. Схема соединения нейронов типа WTA изображена на рис.1.6. На функционирование нейронов типа WTA оказывает существенное влияние нормализация входных векторов и весовых коэффициентов. Выходной сигнал i-го нейрона может быть описан векторным отношением:
Поскольку
Рис. 1.6 Схема соединения нейронов типа WTA В результате победы нейрона уточняются его весовые коэффициенты, значения которых приближаются к значениям вектора x. Проигравшие нейроны не изменяют свои веса. Следствием такой конкуренции становится самоорганизация процесса обучения.
Популярное: Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1269)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |