ЗАВИСИМОСТИ МЕЖДУ НИМИ
При выполнении геодезических работ на местности, работ с картой или чертежом необходимо определить положение линии (ориентировать линию) относительно стран света или какого-нибудь направления, принимаемого за исходное. Ориентирование заключается в том, что определяют угол между исходным направлением и направлением данной линии. За исходное направление для ориентирования принимают истинный (географический), магнитный меридианы или ось абсцисс прямоугольной системы координат плана. В качестве углов, определяющих направление линии, служат истинный и магнитный азимуты, дирекционный угол и румбы. Рис.10. Азимуты Азимутом называется угол между северным направлением меридиана и направлением данной линии MN (рис. 10). Азимут измеряется от севера через восток, юг и запад, т.е. по направлению движения часовой стрелки, и может иметь значения 0...3600. Азимут, измеряемый относительно истинного меридиана, называется истинным. В геодезии принято различать прямое и обратное направления линии. Если направление линии MN от точки М к точке N считать прямым, то NM - обратное направление той же линии. В соответствии с этим угол А - прямой азимут линии MN в точке М, а А1 - обратный азимут этой же линии в точке N. Меридианы разных точек не параллельны между собой, так как они сходятся в точках полюсов. Отсюда азимут линии в разных ее точках имеет разное значение. Угол между направлениями двух меридианов называется сближением меридианов и обозначается γ. Зависимость между прямым и обратным азимутами линии MN выражается формулой А1 = А+ 180° + γ. Истинные азимуты линий местности определяются путем астрономических наблюдений или с помощью приборов - гиротеодолитов. Иногда для ориентирования линии местности пользуются не азимутами, а румбами. Рис.11. Румбы
Румбом (рис. 11) называется острый угол между ближайшим (северным С или южным Ю) направлением меридиана и направлением данной линии. Румбы обозначают буквой r с индексами, указывающими четверть, в которой находится румб. Названия четвертей составлены из соответствующих обозначений стран света. Так, первая четверть - северо-восточная (СВ), вторая - юго-восточная (ЮВ), третья - юго-западная (ЮЗ), четвертая - северо-западная (СЗ). Соответственно обозначают румбы в четвертях, например, в первой rCB, во второй –rЮВ. Румбы измеряют в градусах (0...900). Зависимость между азимутами и румбами
В прямоугольной системе координат ориентирование линии производят относительно оси абсцисс. Угол, отсчитываемый в направлении хода часовой стрелки от положительного (северного) направления оси абсцисс до линии, направление которой определяется, называется дирекционным. Дирекционные углы обозначаются буквой α, и подобно азимуту, изменяются от 0...3600. Дирекционный угол какого-либо направления непосредственно на местности не измеряют, его значение можно вычислить, если для данного направления определен истинный азимут. Зависимость между дирекционным углом а и истинным азимутом А приведена на рис. 12. В данном случае γ - сближение меридианов - представляет собой угол между истинным меридианом М и осью абсцисс в этой точке. Ось абсцисс параллельна осевому меридиану зоны, в которой расположена линия MN. Как видно из рисунка, α = А - γ. Так же, как и для азимута, различают прямой и обратный дирекционные углы: α - прямой, α '-обратный дирекционные углы линии MN: α ' = α + 180°. Румбы дирекционных углов обозначают и вычисляют так же, как румбы истинных азимутов, только отсчитывают от северного и южного направлений оси абсцисс. Направление магнитной оси свободно подвешенной магнитной стрелки называется магнитным меридианом. Угол между северным направлением магнитного меридиана и направлением данной линии называют магнитным азимутом. Магнитный азимут, так же как и истинный, считают по направлению движения часовой стрелки; он также изменяется в пределах 0...3600. Зависимость между магнитными азимутами и магнитными румбами такая же, как между истинными румбами. Так как магнитный полюс не совпадает с географическим, направление магнитного меридиана в данной точке не совпадает с направлением истинного меридиана.
Рис. 12. Зависимость между дирекционным углом и истинным азимутом линии
Горизонтальный угол между этими направлениями называют склонением магнитной стрелки δ. В зависимости от того, в какую сторону уклоняется северный конец стрелки от направления истинного меридиана, различают восточное и западное склонение. Перед значением восточного склонения обычно ставят знак плюс, западного - минус. Зависимость (рис. 13, а) между истинным А и магнитным АМ азимутами выражается формулой А = АМ + δ. При использовании этой формулы учитывают знак склонения. Если известно склонение δ магнитной стрелки и сближение меридианов γ, по измеренному магнитному азимуту АМ линии MN можно вычислить дирекционный угол α (рис. 13, 6) этой линии: α = АМ + (δ – γ), где разность γ - δ - поправка на склонение стрелки и сближение меридианов (учитывают при ориентировании топографической карты).
Рис. 13. Зависимости между углами: а - истинным и магнитным азимутами. б - магнитным азимутам и дирекционным углом
В различных точках Земли магнитная стрелка имеет различное склонение. Так, на территории РФ оно колеблется в пределах 0...±15°. Склонение магнитной стрелки не остается постоянным и в данной точке Земли (различают вековые, годовые и суточные изменения склонений). Больше всего изменяются суточные склонения, колебания которых достигают 15'. Следовательно, магнитная стрелка указывает положение магнитного меридиана приближенно и ориентировать линии местности по магнитным азимутам можно тогда, когда не требуется высокой точности.
ГЕОДЕЗИЧЕСКИЕ СЕТИ ПЛАНОВЫЕ СЕТИ
Для составления карт и планов, решения геодезических задач, в том числе геодезического обеспечения строительства, на поверхности Земли располагают ряд точек, связанных между собой единой системой координат. Эти точки маркируют на поверхности Земли или в зданиях и сооружениях центрами (знаками). Совокупность закрепляемых на местности или зданиях точек (пунктов), положение которых определено в единой системе координат, называют геодезическими сетями. Геодезические сети подразделяют на плановые и высотные: первые служат для определения координат X и У геодезических центров, вторые - для определения их высот Н. Принцип построения плановых геодезических сетей заключается в следующем. На местности выбирают точки, взаимное положение которых представляется в виде геометрических фигур: треугольников, четырехугольников, ломаных линий и т.д. Причем точки выбирают с таким расчетом, чтобы некоторые элементы фигур (стороны, углы) можно было бы непосредственно измерить, а все другие элементы вычислить по данным измерений. Например, в треугольнике достаточно измерить одну сторону и три угла (один для контроля правильности измерений) или две стороны и два угла (один для контроля правильности измерений), а остальные стороны и углы вычислить. Для вычисления плановых координат вершин выбранных точек необходимо кроме элементов геометрических фигур знать еще дирекционный угол стороны одной из фигур и координаты одной из вершин. Сети строят по принципу перехода от общего к частному, т. е. от сетей с большими расстояниями между пунктами и высокоточными измерениями к сетям с меньшими расстояниями и менее точным. Геодезические сети подразделяют на четыре вида: государственные, сгущения, съемочные и специальные.
Рис.91. Схема построения государственных плановых геодезических сетей 1,2,3 и 4-го классов методом триангуляции Государственные геодезические сети служат исходными для построения всех других видов сетей. Началом единого отсчета плановых координат в РФ служит центр круглого зала Пулковской обсерватории в Санкт-Петербурге. Плановые сети. Государственные плановые геодезические сети разделяют на четыре класса. Сеть 1-го класса имеет наивысшую точность и охватывает всю территорию страны как единое целое. Сеть каждого последующего класса строится на основе сетей высших классов. Так, сеть 2-го класса строят на основе сетей 1-го класса, 3-го класса - на основе сетей всех предыдущих классов. Типичная схема построения государственных плановых геодезических сетей 1-, 2-, 3- и 4-го классов методом триангуляции (треугольников) приведена на рис. 91. В настоящее время для построения государственных сетей используют спутниковые методы измерений. Сети сгущения строят для дальнейшего увеличения плотности (числа пунктов, приходящихся на единицу площади) государственных сетей. Плановые сети сгущения подразделяют на 1-й и 2-й разряды. Съемочные сети – это тоже сети сгущения, но с еще большей плотностью. С точек съемочных сетей производят непосредственно съемку предметов местности и рельефа для составления карт и планов различных масштабов. Специальные геодезические сети создают для геодезического обеспечения строительства сооружений. Плотность пунктов, схема построения и точность этих сетей зависят от специфических особенностей строительства. Строительными нормами и правилами (СНиП) предусмотрено создавать специальные сети с учетом: - проектного и существующего размещения зданий (сооружений) и инженерных сетей на строительной площадке; - обеспечения сохранности и устойчивости знаков, закрепляющих пункты разбивочной основы; - геологических, температурных, динамических процессов и других воздействий в районе строительства, которые могут оказать неблагоприятное влияние на качество построения разбивочной основы; - использования создаваемой геодезической разбивочной основы в процессе эксплуатации построенного объекта, его расширения и реконструкции. Разбивочная сеть строительной площадки создается для выноса в натуру основных или главных разбивочных осей здания (сооружения), а также при необходимости построения внешней разбивочной сети здания (сооружения), производства исполнительных съемок. Построение геодезической разбивочной основы для строительства производят методами триангуляции, трилатерации, полигонометрии, геодезических ходов, засечек и др. ВЫСОТНЫЕ СЕТИ Государственные высотные геодезические сети создают для распространения по всей территории страны единой системы высот. За начало высот в РФ и ряде других стран принят средний уровень Балтийского моря, определение которого проводилось, начиная с 1825 г. Этот уровень отмечен горизонтальной чертой на медной металлической пластине, укрепленной в устое моста через обводной канал в Кронштадте. Между пунктами государственных высотных геодезических сетей высокой точности (1-го класса) размещают пункты высотных сетей низших классов (2-го, 3-го и т.д.). Если на рисунке, где размещены пункты высотной сети, соединить эти пункты линиями, получатся фигуры, которые называют ходами. Несколько пересекающихся ходов называют сетями. Как правило, сети создают из ходов, прокладываемых между тремя или более точками (рис. 93). В целом точки (реперы) высотных сетей, называемых нивелирными, достаточно равномерно распределены на территории страны. На незастроенной территории расстояния между реперами колеблются в пределах 5...7 км в городах сеть реперов в 10 раз плотнее. Рис. 93. Схема государственной высотной сети Для решения ограниченного круга вопросов при изысканиях, строительстве и эксплуатации зданий и сооружений создают высотную сеть технического класса. Нивелирные сети на строительных площадках и при создании внешних разбивочных сетей создают на базе плановых сетей, т.е. для части плановых сетей определяют высотные отметки. Как правило, сети образуют полигоны с узловыми точками (общими точками пересечения двух или более ходов одного и того же класса). Каждый нивелирный ход опирается обоими концами на реперы ходов более высокого класса или узловые точки.
Популярное: Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (300)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |