Мегаобучалка Главная | О нас | Обратная связь


Простые трансцендентные расширения.



2019-07-03 227 Обсуждений (0)
Простые трансцендентные расширения. 0.00 из 5.00 0 оценок




 

Каждое простое трансцендентное расширение поля D, как мы знаем, эквивалентно полю частных D(x)кольца многочленов D[x]. Поэтому мы изучим это поле частных

W = D(x).

Элементами поля W служат рациональные функции

h = f(x)/g(x).

Это представление можно считать несократимым (f и g взаимно просты). Наибольшая из степеней многочленов f ( x ) и g (х) назы­вается степенью функции h.

Теорема. Каждый отличный от константы элемент h сте­пени п трансцендентен над D и поле D(x) — алгебраическое рас­ширение поля D(h) степени п.

Доказательство. Представление h= f (х)/ g (х) будем считать несократимым. Тогда элемент х удовлетворяет уравнению

g(x) × h - f(x)=0

с коэффициентами из D(h). Эти коэффициенты не могут быть все равны нулю. Действительно, если бы все они равнялись нулю и ak был бы при той же степени х любым ненулевым коэффициентом многочлена g ( x ), а bk — ненулевым коэффициентом многочлена f ( x ) , то должно было бы иметь место равенство

ak h - bk = 0

откуда h = bk/ak =const, что противоречит предположению. Сле­довательно, элемент х алгебраичен над D(h).

Если бы элемент h был алгебраическим над D, то и х был бы алгебраическим над D, что, однако, не так. Следовательно, элемент h трансцендентен над D.

Элемент х является корнем многочлена степени n

g(z) h - f(z)

в кольце D(h)(z).Этот многочлен неразложим в D(h)[z], потому что иначе он был бы разложим п в кольце D[h, z], и, так как он линеен по h, один из множителей должен был бы зависеть не от h, а лишь от z. Но такого множителя не может быть, потому что g ( z ) и f ( z ) взаимно просты.

Следовательно, элемент х является алгебраическим степени п над полем D(h). Отсюда следует утверждение о том, что (D(x) : D(h)) = n

Для дальнейшего отметим, что многочлен

g(z) h - f(z)

не имеет множителей, зависящих только от z (т. е. лежащих в D[z]). Это утверждение остается верным, когда h заменяется своим значением f (х)/ g (х) и умножается на знаменатель g (х) тем самым многочлен

g(z)f(x) - f(z)g(x)

 

кольца D[x, z] не имеет множителей, зависящих только от z.

Из доказанной теоремы вытекают три следствия.

1. Степень функции h — f (х)/ g (х) зависит лишь от полей D(h) и D(x), а не от того или иного выбора порождающего элемента х.

2. Равенство Д (h) = D(х)имеет место тогда и только тогда, когда h имеет степень 1, т. е. является дробно-линейной функ­цией. Это означает: порождающим элементом поля, кроме эле­мента х, может служить любая дробно-линейная функция от x и только такая функция.

3. Любой автоморфизм поля D(х), оставляющий на месте каждый элемент поля D, должен переводить элемент x в какой-либо порождающий элемент поля. Обратно, если х переводится в какой-либо порождающий элемент х = ( ax + b )/( cx + d ) и каждая функция j(х)в функцию j(х), то получается автоморфизм, при котором все элементы из D остаются на месте. Следовательно,

Все автоморфизмы поля D ( x ) над полем D являются дробно-линейными подстановками

x = (ax+b)/(cx+d), ad – bc ¹ 0.

Важной для некоторых геометрических исследований является

Теорема Люрота. Каждое промежуточное поле S , для которого D Ì S Í D ( x ), является простым трансцендентным расширением: S = D ( q ).

Доказательство. Элемент х должен быть алгебраическим над S, потому что если h — любой элемент из S не принадлежащий полю D, то, как было показано, элемент х является алгебраическим над D(h) и тем более алгебраическим над S. Пусть неразложимый в кольце многочленов S[z] многочлен со старшим коэффициентом 1 и корнем x имеет вид

f0(z) = zn+a1zn-1+…+an.           (1)

Выясним строение этого многочлена.

Элементы ai  являются рациональными функциями от x. С помощью умножения на общий знаменатель их можно сделать целыми рациональными функциями и, кроме того, получить многочлен относительно x с содержанием 1:

f( x, z) =b0(x)zn+b1 (x)zn-1+…+bn(x).

Степень этого многочлена по х обозначим через т, а по z — через п.

Коэффициенты a i = b i / b 0 из (1) не могут все быть независимыми от х, так как иначе х оказался бы алгебраическим элементом над D; поэтому один из них, скажем,

q = a i = bi(x)/ b0(x),

должен фактически зависеть от х;запишем его в несократимом виде:

                                                q = g(x)/h(x)

Степени многочленов g (х) и h (х) не превосходят т. Многочлен

g(z) - qh(z) = g(z) – (g(x)/h(x))h(z)

(не являющийся тождественным нулем) имеет корень z = x , апотому он делится на f 0 ( z ) в кольце S[z]. Если перейти от этих рациональных по х многочленов к целым по х многочленам с содержанием 1, то отношение делимости сохра­нится, и мы получим

h(x)g(z)-g(x)h(z) = q(x, z)f(x, z).

Левая часть в этом равенстве имеет степень по х, не превосхо­дящую т. Но справа уже многочлен f имеет степень т; следо­вательно, степень левой части в точности равна т и q (х, z ) не зависит от х. Однако зависящий лишь от z множитель не может делить левую часть (см. выше); поэтому q (х, z ) является кон­стантой:

h(x)g(z)-g(x)h(z) = qf(x, z).

Так как присутствие константы q роли не играет, строение мно­гочлена f (х, z ) описано полностью. Степень многочлена f (х, z ) по х равна т следовательно (по соображениям симметрии), и степень по z равна т, такчто m = п. По меньшей мере одна из степеней многочленов g ( x ) и h (х) должна фактически достигать значения m , следовательно, и функция q должна иметь степень т по х.

Тем самым, так как с одной стороны установлено равенство

( D (х): D ( q )) = т,

 а с другой — равенство

( D ( x ): S ) = m ;

 то, поскольку S содержит D(q),

(S: D(q)) =1,

S = D(q).

 

Заключение.

В данной курсовой работе рассмотрены основные алгебраические расширения полей, во-первых, ввиду той фундаментальной роли, которую поля играют в современной математике, во-вторых, ввиду относительной простоты этого понятия.  

В курсовой работе были рассмотрены следующие виды расширений числового поля P:

Ø Простое алгебраическое расширение поля.

Ø Составное алгебраическое расширение поля.

Ø Сепарабельные и несепарабельные расширения.

Ø Бесконечные расширения полей.

Анализируя работу можно сделать некоторые выводы.

 Из рассмотренных в первых двух частях расширений, таких как:

1) простые алгебраические расширения;

2) конечные расширения;

3) составные алгебраические расширения.

Следует, что все эти виды расширений совпадают и, в частности, исчерпываются простыми алгебраическими расширениями поля P.

  

 

 

Литература

1. Л.Я. Куликов. Алгебра и теория чисел.— М.: Высш. Школа,1979.—528-538с.

2. Б.Л. Ван-дер-Варден. Алгебра.— М.,1976 — 138-151с.,158-167с.,244-253с.

3. Э.Ф. Шмигирев, С.В. Игнатович. Теория многочленов.— Мозырь 2002.



2019-07-03 227 Обсуждений (0)
Простые трансцендентные расширения. 0.00 из 5.00 0 оценок









Обсуждение в статье: Простые трансцендентные расширения.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (227)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)