Мегаобучалка Главная | О нас | Обратная связь


Основные свойства электрона.



2019-07-03 542 Обсуждений (0)
Основные свойства электрона. 0.00 из 5.00 0 оценок




Вопросы к экзамену но курсу «Электроника»

Основные понятия электроники. Краткая история развития электронных приборов и интегральных схем.

 

Как вы помните, электрический ток представляет собой не что иное, как направленное движение электронов по проводнику. Чем больше электронов принимают участие в этом движении, тем сильнее будет ток.

Резисторы — элементы, обладающие сопротивлением, — были названы так за свою способность сопротивляться току (resisto — "сопротивляться" в переводе с латинского), протекающему через них. Можно сказать, что резисторы представляют собой элементы, тормозящие электроны. Контролируя ток, протекающий через резистор, можно заставить схему функционировать по-разному.

Резисторы, как правило, представляют собой самые первые "кирпичики" электронных схем, поэтому вы встретитесь с ними в абсолютном большинстве проектов. Вот несколько функций, которые могут выполнять эти элементы.

Ограничение тока на других радиоэлементах: некоторые радиодетали, такие как, например, светоизлучающие диоды (СИД), потребляют ток в широком диапазоне значений. Светодиоды, если не ограничить их искусственно, попробуют поглотить ток практически любой величины, но если дать им слишком много тока — они просто сгорят. Для ограничения тока, протекающего через СИД, очень удобно использовать резистор.

Уменьшение напряжения на заданном участке схемы: во многих схемах необходимо подавать на различные участки разные значения напряжения, чтобы запитывать разные радиоэлементы. Это легко выполнить, имея под рукой резисторы. Соединив два резистора последовательно, как показано на рис. 1, можно получить схемотехнический узел, называющийся делителем напряжения. Полагая, например, что оба резистора имеют одинаковые сопротивления, можно сделать вывод, что раз они тормозят электроны в равной мере, напряжение в точке их соединения будет равно половине приложенного ко всему узлу напряжения.

Контроль напряжения/тока, протекающего через другие компоненты: соединив резистор и конденсатор, можно получить простейший таймер. Если же поставить резистор на входе транзистора, то можно изменить нужным образом его коэффициент усиления. Ну, а если... Ладно, - надеемся, идея уже понятна.

Защита входов чувствительных элементов: слишком большой ток может повредить некоторые радиодетали. Если же поставить резисторы на входах чувствительных транзисторов или интегральных микросхем, то тем самым входной ток ограничится до нужных значений. Хотя такое включение и не является стопроцентной гарантией от перегрузок токов, оно сэкономит вам немало нервов и денег, особенно если подумать, сколько времени ушло бы на поиск и устранение неисправности в схеме.

Рисунок 1.1 Для деления напряжения достаточно взять два резистора. Такой прием широко используется для обеспечения различных напряжений на разных участках схемы

Раз уж мы договорились, что резисторы служат своеобразными тормозами для электронов, то теперь следует понять, насколько же сильно нужно вдавить педаль в пол, чтобы получить требуемый поток электронов. Причем такой контроль может включать в себя и изменение сопротивления резистора "на ходу".

Чтобы понять, как можно изменить сопротивление проводника, полезно будет узнать, что существует два основных типа резисторов: постоянные и переменные. Вот чем они отличаются.

Постоянный резистор обеспечивает некоторое постоянно заданное сопротивление току. Значение сопротивления можно расшифровать по цветовой маркировке на корпусе резистора. Зашифрованный код начинается ближе к одному из краев резистора и может состоять из четырех, пяти и иногда шести полосок разного цвета. Порядок полосок и разрядов, обозначаемых ими, приведены на рис. 2.

Рисунок 1.2 На постоянных резисторах для характеристики значений сопротивления используются цветные полоски

Переменный резистор, или потенциометр, позволяет "на ходу" плавно изменять сопротивление от практически нулевого до некоторого жестко заданного фиксированного значения. Обычно максимальное значение сопротивления потенциометра обозначается на его корпусе.

Совет
Не все резисторы имеют цветовую маркировку. Иногда значение сопротивления может быть отпечатано прямо на корпусе. Это делают для так называемых точных резисторов: значение реального сопротивления таких резисторов очень близко к цифре, опечатанной на корпусе.1 Более подробно о них вы сможете узнать буквально через пару абзацев.

Ключ (переключатель, выключатель) — электрический коммутационный аппарат, служащий для замыкания и размыкания электрической цепи.

Принцип работы транзисторного ключа, включающего ток на нагрузку R2. В роли S1 обычно выступают логические элементы или микроконтроллеры

 

Конденса́тор (от лат. condensare — «уплотнять», «сгущать», или от лат. condensatio — «накопление») — двухполюсник с определённым или переменным значением ёмкости[1] и малой проводимостью; устройство для накопления заряда и энергии электрического поля. Является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок (см. рис.). Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки).

Конденсатор постоянной ёмкости соответствующее

В Конденсаторах хранятся электроны, притягиваясь к положительному полюсу. Если убрать приложенное к конденсатору напряжение, то электроны постепенно рассосутся. Благодаря протяженности во времени накопления и рассасывания электронов, конденсаторы могут работать в качестве элементов, сглаживающих перепады напряжения.. Именно благодаря конденсаторам становится возможной работа усилителей и тысяч других схем. Конденсаторы используются в большинстве электронных устройств для выполнения самых разных функций.

Создания таймеров: простейший таймер представляет собой своеобразный электронный метроном и состоит из конденсатора и резистора, который контролирует скорость хода такого метронома.

Сглаживания напряжений: в источниках питания, преобразующих переменный ток в постоянный, практически всегда используются конденсаторы, помогающие сглаживать пульсации напряжения и, таким образом, получать стабильный постоянный потенциал.

Ограничения постоянного тока: при последовательном соединении конденсатора и источника сигнала, например, микрофона, конденсатор блокирует постоянный ток, но пропускает переменный4. Эта функция используется почти во всех усилителях.

Подстройки частоты: конденсаторы часто используются для получения простых фильтров, отсекающих сигналы переменного тока с частотой ниже или выше некоторого заданного порога. Изменяя величину емкости конденсатора, можно изменить предельную частоту фильтра.

4 Данное свойство конденсатора основывается на том, что он представляет собой сопротивление, обратно пропорционально зависимое от частоты. Чем выше частота проходящего сигнала, тем меньше сопротивление конденсатора и наоборот; для постоянного тока частота изменения сигнала равна 0, потому сопротивление приближается к бесконечности.

Дио́д (от др.-греч. δις[1] — два и -од[2] — от окончания -од термина электрод; букв. «двухэлектродный»; корень -од происходит от др.-греч. ὁδός «путь») — электронный элемент, обладающий различной проводимостью в зависимости от направления электрического тока.

Обозначение (по ГОСТ 2.730-73[3]) выпрямительного полупроводникового диода на схемах.

 

 

Все диоды обязательно имеют положительный и отрицательный выводы. Эти выводы получили специальные названия: положительный называется анодом, а отрицательный - катодом. Катод диода легко опознать по полоске красного или черного цвета, расположенной у этого вывода на корпусе.

В ту строну куда показывает стрелка, диод проводит очень хорошо (сопротивление доли Ома) . В обратном направлении диод проводит очень плохо (сопротивлдение сотни килоом - мегаомы) . Если учитывать, что обычно считается что ток течет от плюса к минусу, то направление указанное стрелкой - это направление прямого тока.

Диод имеет два вывода, каждый из которых обладает крайне большим сопротивлением для тока, текущего в одном направлении, и малым - для тока, протекающего в противоположном. Иными словами, диод служит своеобразным клапаном, пропускающим электроны лишь в одном направлении; в противоположном они пройти не могут.

Диоды используются в массе различных схем, и их можно разделить на несколько типов. Вот список наиболее широко применяемых диодов.

Зенеровский диод (стабилитрон). Ограничивает напряжение до определенного уровня. На таком диоде можно дешево и удобно построить регулятор напряжения для вашей схемы.

Полупроводнико́вый стабилитро́н, или диод Зенера — полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки, а его сопротивление весьма высоко. При наступлении пробоя ток через стабилитрон резко возрастает, а его дифференциальное сопротивление падает до величины, составляющей для различных приборов от долей Ома до сотен Ом. Поэтому в режиме пробоя напряжение на стабилитроне поддерживается с заданной точностью в широком диапазоне обратных токов.

 

Светоизлучающий диод (светодиод, или СИД). Все полупроводники излучают кванты света, если через них протекает ток. Светодиоды излучают этот свет в видимом диапазоне спектра. В настоящее время можно найти светодиоды всех без исключения цветов радуги.

Кремниевый управляемый диод (тиристор). Тиристор представляет собой своеобразный ключ, используемый для контроля переменного или постоянного тока. Такие элементы широко применяют в реостатах для регулирования освещения.

Выпрямительный диод. Этот основной тип диода преобразовывает (или выпрямляет) переменный ток в постоянный. {Запомните: переменный ток постоянно пульсирует между плюсом и минусом, а постоянный ток стабилен и может быть постоянно либо положительным, либо отрицательным.

За исключением зенеровских, диоды не имеют номиналов, как резисторы или конденсаторы. Диод просто выполняет свою функцию, контролируя направление потока электронов. Однако это не означает, что все диоды одинаковы. Они оцениваются по двум основным параметрам: предельному обратному напряжению и максимальному току. Эти критерии определяют класс диода, который используется в той или иной схеме.

Предельное обратное напряжение представляет собой максимальное напряжение на выводах диода, приложенное к нему в закрытом состоянии. К примеру, если диод рассчитан на 100 В, не следует применять его в схеме, в которой к нему прикладывается большая разность потенциалов.

Максимальный рабочий ток представляет собой ток, который диод может выдержать, не выходя из строя. Предположим, некоторый диод имеет данный параметр, равный 3 А. Ток, превышающий данное значение, диод не сможет выдержать - он перегреется и выйдет из строя.

Диоды идентифицируются согласно принятому в электронной промышленности стандарту - маркировке цифровым кодом. Классический пример такой маркировки представляет собой выпрямительный диод1N4001, имеющий предельное напряжение 50 В и ток 1 А. Предельное напряжение диода 1N4002 равно уже 100 В, a 1N4003 - 200 В, и т.д.

Транзисторы появились как альтернатива вакуумным лампам. Два основных назначения транзистора (и, соответственно, вакуумной лампы) состоят в усилении сигнала или его включении/выключении. Несмотря на миниатюрные размеры транзистора, он отлично справляется с той же работой, что и электронная лампа, потребляя при этом значительно меньше энергии.

Транзи́стор (англ. transistor), полупроводнико́вый трио́д — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналом управлять током в электрической цепи. Обычно используется для усиления, генерации и преобразования электрических сигналов. В общем случае транзистором называют любое устройство, которое имитирует главное свойство транзистора — изменения сигнала между двумя различными состояниями при изменении сигнала на управляющем электроде.

p-n-p канал p-типа
n-p-n канал n-типа
Биполярные   Полевые  


Обозначение транзисторов разных типов.Условные обозначения: Э — эмиттер, К — коллектор, Б — база;З — затвор, И — исток, С — сток.

Структура биполярного n-p-n транзистора. Ток через базу управляет током «коллектор-эмиттер»

 

 

Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n и p-n-p транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). Работа биполярного транзистора, в отличие от полевого транзистора, основана на переносе зарядов одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» — «два»).

Полевой транзистор — полупроводниковый прибор, через который протекает поток основных носителей зарядов, регулируемый поперечным электрическим полем, которое создаётся напряжением, приложенным между затвором и стоком или между затвором и истоком. Так как принцип действия полевых транзисторов основан на перемещении основных носителей заряда одного типа (электронами или дырками), такие приборы ещё называют униполярными, тем самым противопоставляя их биполярным.

Схемы включения биполярного транзистора с общим эмиттером (ОЭ) — осуществляет усиление как по току, так и по напряжению — наиболее часто применяемая схема;

с общим коллектором (ОК) — осуществляет усиление только по току — применяется для согласования высокоимпедансных источников сигнала с низкоомными сопротивлениями нагрузок;

с общей базой (ОБ) — усиление только по напряжению, в силу своих недостатков в однотранзисторных каскадах усиления применяется редко (в основном в усилителях СВЧ), обычно в составных схемах (например, каскодных).

При схеме включения биполярного транзистора с общим эмиттером (ОЭ) входной сигнал подаётся на базу, но снимается с коллектора. При этом выходной сигнал инвертируется относительно входного (для гармонического сигнала фаза выходного сигнала отличается от входного на 180°). Каскад усиливает и ток, и напряжение. Данное включение транзистора позволяет получить наибольшее усиление по мощности, поэтому наиболее распространено. Однако, при такой схеме нелинейные искажения сигнала больше, чем в схемах с общей базой или с общим коллектором. Кроме того, при данной схеме включения на характеристики усилителя значительное влияние оказывают внешние факторы, такие как напряжение питания или температура окружающей среды. Обычно для компенсации этих факторов применяют отрицательную обратную связь, но она снижает коэффициент усиления.

Усилительный каскад по схеме с общим эмиттером на основе npn-транзистора (Схема с заземленным эмиттером)

 

 

Эмиттерный повторитель — частный случай повторителей напряжения на основе биполярного транзистора. Характеризуется высоким усилением по току и коэффициентом передачи по напряжению, близким к единице. При этом входное сопротивление относительно велико (однако оно меньше, чем входное сопротивление истокового повторителя), а выходное — мало. В эмиттерном повторителе используется схема включения транзистора с общим коллектором (ОК). То есть напряжение питания подаётся на коллектор, входной сигнал подаётся на базу, а выходной сигнал снимается с эмиттера. В результате чего образуется 100 % отрицательная обратная связь по напряжению, что позволяет значительно уменьшить нелинейные искажения, возникающие при работе. Следует также отметить, что фазы входного и выходного сигнала совпадают. Такая схема включения используется для построения входных усилителей, в случае если выходное сопротивление источника велико, и как буферный усилитель, а также в качестве выходных каскадов усилителей мощности.

Эмиттерный повторитель на основе npn-транзистора

 

 

Усилительный каскад с общей базой (ОБ) — одна из трёх типовых схем построения электронных усилителей на основе биполярного транзистора. Характеризуется отсутствием усиления по току (коэффициент передачи близок к единице, но меньше единицы), высоким коэффициентом усиления по напряжению и умеренным (по сравнению со схемой с общим эмиттером) коэффициентом усиления по мощности. Входной сигнал подаётся на эмиттер, а выходной снимается с коллектора. При этом входное сопротивление очень мало, а выходное — велико. Фазы входного и выходного сигнала совпадают. Особенностью схемы с общей базой является минимальная среди трёх типовых схем усилителей «паразитная» обратная связь с выхода на вход через конструктивные элементы транзистора. Поэтому схема с общей базой наиболее часто используется для построения высокочастотных усилителей, особенно вблизи верхней границы рабочего диапазона частот транзистора. Достоинствами схемы являются стабильные температурные и частотные свойства, то есть параметры схемы(коэффициент усиления напряжения, тока и входное сопротивление) остаются неизменными при изменении температуры окружающей среды. Недостатками схемы являются малое входное сопротивление и отсутствие усиления по току.

Усилительный каскад по схеме с общей базой на основе npn-транзистора

 

Основные свойства электрона.

Электро́н (от др.-греч. ἤλεκτρον — янтарь[5]) — стабильная, отрицательно заряженная элементарная частица. Считается неделимой и является одной из основных структурных единиц вещества. Электроны образуют электронные оболочки атомов, строение которых определяет большинство оптических, электрических, магнитных, механических, химических свойств вещества. Движение электронов обусловливает протекание электрического тока в проводниках.

m_e=9,10938356(11)*10^(-31) кг — масса электрона.

e_0=-1,6021766208(98)*10^(-19) Кл — заряд электрона.

В большинстве источников низкоэнергетичных электронов используются явления термоэлектронной эмиссии и фотоэлектронной эмиссии. Высокоэнергетичные, с энергией от нескольких кэВ до нескольких МэВ, электроны излучаются в процессах бета-распада и внутренней конверсии радиоактивных ядер. Электроны, излучаемые в бета-распаде, иногда называют бета-частицами или бета-лучами. Источниками электронов с более высокой энергией служат ускорители.

Движение электронов в металлах и полупроводниках позволяет легко переносить энергию и управлять ею. Это явление (электрический ток) является одной из основ современной цивилизации и используется практически повсеместно в промышленности, связи, информатике, электронике, в быту. Скорость дрейфа электронов в проводниках крайне мала (~0,1—1 мм/с), однако электрическое поле распространяется со скоростью света. В связи с этим ток во всей цепи устанавливается практически мгновенно.

 



2019-07-03 542 Обсуждений (0)
Основные свойства электрона. 0.00 из 5.00 0 оценок









Обсуждение в статье: Основные свойства электрона.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (542)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.013 сек.)