Мегаобучалка Главная | О нас | Обратная связь


Информатика в гуманитарных исследованиях



2019-07-03 504 Обсуждений (0)
Информатика в гуманитарных исследованиях 0.00 из 5.00 0 оценок




Мы все живем в эпоху, когда компьютерные технологии проникли абсолютно во все отрасли человеческой деятельности. Не исключением является и экономика.

При нынешних темпах развития производства непрерывно идет процесс взаимодействия всех его составляющих частей.

Использование математических методов и современных компьютерных технологий в гуманитарных исследованиях не только ускоряет расчеты, но и в десятки, в сотни раз уменьшает время, нужное для этого. При наличии специализированных программ можно проводить так называемое моделирование, пришедшее на замену дорогостоящим поискам ответов и путей решения проблем с помощью проб и ошибок [Громов Г. Р. Очерки информационной технологии. — М.: ИнфоАрт, 1993, стр. 65].

В основном применяют модели двух видов. Модели, описывающие какое-либо состояние моделируемого положения, называют статическими. Если моделируются последовательности таких состояний и связи между ними, нужны модели динамические, учитывающие фактор времени и разнообразные по уровню сложности моделируемого явления.

И те и другие модели достаточно наглядны: показывают различные системы в их развитии, позволяют проанализировать, где, каким образом, с какими затратами можно что-то исправить, что-либо дополнить.

В хозяйственной практике, в планово-экономической работе, в теории экономики возникает множество разнообразных задач, которые решают на экономико-математических моделях, если надо достигнуть углубленного понимания реальных хозяйственных процессов. С помощью этих методов можно разрабатывать планы развития производства, давать практические рекомендации по улучшению пропорций экономики и ее отраслей, рационализировать использование материальных и трудовых ресурсов. А это огромная по своим масштабам система экономических показателей, характеризующих основные соотношения, пропорции и темпы развития производства.

В такой системе требуется отыскать сотни миллионов взаимосвязанных неизвестных. Например, у нас выпускается десятки миллионов разных наименований изделий, на разных предприятиях, по разным технологиям, в разных регионах страны. Также, надо учитывать и износ оборудования на производстве, и ограниченность ресурсов, и темпы научно-технического прогресса, и многое, многое другое. По громоздкости расчетов задача трудно вообразимая даже при современном уровне развития ЭВМ и компьютерных технологий [Иванов В. Н., Стогний А. А. Банк социальных данных. // Проблема накопления и анализа на ЭВМ данных социологических исследований. — М., 1989, стр. 168].

Вот почему предметом глубокого изучения в гуманитарных исследованиях становится информация. Вовремя полученная и точно обработанная она способствует успеху в работе над решением различных проблем. Поэтому информационно-поисковые и информационно-справочные системы ориентируются и на удовлетворение нужд гуманитарных наук. Применение в гуманитарных исследованиях информационно-справочных сетей позволяет вести мониторинг за различными факторами, обязательную обратную связь между объектом управления и результатами исследования, их корректировку.

Нельзя не отметить, что существенной частью управления хозяйством являются информационные технологии. Без них невозможно ни экономическое планирование производства, ни распределение ресурсов, ни выявление с определенной степенью точности пропорций и связей в экономике, ни осуществление руководства, управления и контроля на предприятии, в отрасли, в регионе, в целом в экономике.

В последнее время для решения гуманитарных задач большое внимание уделяют применению автоматизированных систем управления и автоматических систем обработки данных. Использование таких систем помогает находить оптимальные варианты, позволяющие разрешить различные вопросы, требующие в процессе поиска ответов не только скорости и больших объемов вычислений, но и гибкости, динамизма, неординарных подходов.

Существует множество программных продуктов, позволяющих решать те или иные задачи гуманитарных исследований от бухгалтерской деятельности в экономике, до различных социологических, археологических и других задач.

О проблемах и перспективах применения математики и информатики в проведении гуманитарных исследований рассказывает следующий раздел реферата.

3. Проблемы и перспективы применения математики и информатики в гуманитарных исследованиях

Уже длительное время главным тормозом практического применения математического моделирования в гуманитарных исследованиях является наполнение разработанных моделей конкретной и качественной информацией. Точность и полнота первичной информации, реальные возможности ее сбора и обработки во многом определяют выбор типов прикладных моделей. С другой стороны, исследования по моделированию выдвигают новые требования к системе информации.

В зависимости от моделируемых объектов и назначения моделей используемая в них исходная информация имеет существенно различный характер и происхождение. Она может быть разделена на две категории: о прошлом развитии и современном состоянии объектов и о будущем развитии объектов, включающую данные об ожидаемых изменениях их внутренних параметров и внешних условий (прогнозы). Вторая категория информации является результатом самостоятельных исследований, которые также могут выполняться посредством моделирования.

Методы наблюдений и использования результатов этих наблюдений разрабатываются статистикой. Поэтому стоит отметить только специфические проблемы наблюдений, связанные с моделированием процессов [Социально-экономическая статистика. // Под ред. Г. Л.Громыко. — М.: Изд-во МГУ, 1989, стр. 380].

Как известно многие процессы являются массовыми; они характеризуются закономерностями, которые не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в гуманитарных исследованиях должно опираться на массовые наблюдения.

Другая проблема порождается динамичностью исследуемых процессов, изменчивостью их параметров и структурных отношений. Вследствие этого процессы приходится постоянно держать под наблюдением, необходимо иметь устойчивый поток новых данных. Поскольку наблюдения за процессами и обработка эмпирических данных обычно занимают довольно много времени, то при построении математических моделей требуется корректировать исходную информацию с учетом ее запаздывания.

Познание количественных отношений исследуемых процессов и явлений опирается на измерения. Точность измерений в значительной степени предопределяет и точность конечных результатов количественного анализа посредством моделирования. Поэтому необходимым условием эффектного использования математического моделирования является совершенствование измерителей. Применение математического моделирования заострило проблему измерений и количественных сопоставлений различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.

В процессе моделирования возникает взаимодействие «первичных» и «вторичных» измерителей. Любая модель опирается на определенную систему измерителей (продукции, ресурсов, элементов и т. д.). В то же время одним из важных результатов моделирования является получение новых (вторичных) измерителей — экономически обоснованных цен на продукцию различных отраслей, оценок эффективности разнокачественных природных ресурсов, измерителей общественной полезности продукции. Однако эти измерители могут испытывать влияние недостаточно обоснованных первичных измерителей, что вынуждает разрабатывать особую методику корректировки первичных измерителей для хозяйственных моделей.

С точки зрения «интересов» моделирования в гуманитарных исследованиях в настоящее время наиболее актуальными проблемами совершенствования измерителей являются: оценка результатов интеллектуальной деятельности (особенно в сфере научно-технических разработок, индустрии информатики), построение обобщающих показателей социально-экономического развития, измерение эффектов обратных связей (влияние хозяйственных и социальных механизмов на эффективность производства).

Можно выделить, по крайней мере, четыре аспекта применения математических методов в решении практических проблем.

Совершенствование системы информации. Математические методы позволяют упорядочить систему информации, выявлять недостатки в имеющейся информации и вырабатывать требования для подготовки новой информации или ее корректировки. Разработка и применение математических моделей указывают пути совершенствования информации, ориентированной на решение определенной системы задач планирования и управления. Прогресс в информационном обеспечении планирования и управления опирается на бурно развивающиеся технические и программные средства информатики.

Интенсификация и повышение точности расчетов. Формализация экономических задач и применение ЭВМ многократно ускоряют типовые, массовые расчеты, повышают точность и сокращают трудоемкость, позволяют проводить многовариантные обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.

Углубление количественного анализа проблем. Благодаря применению метода моделирования значительно усиливаются возможности конкретного количественного анализа; изучение многих факторов, оказывающих влияние на процессы, количественная оценка последствий изменения условий развития экономических объектов и т. п.

Решение принципиально новых задач. Посредством математического моделирования удается решать такие задачи, которые иными средствами решить практически невозможно, например: нахождение оптимального варианта народнохозяйственного плана, имитация народнохозяйственных мероприятий, автоматизация контроля за функционированием сложных экономических объектов.

Сфера практического применения метода моделирования ограничивается возможностями и эффективностью формализации проблем и ситуаций, а также состоянием информационного, математического, технического обеспечения используемых моделей. Стремление во что бы то ни стало применить математическую модель может не дать хороших результатов из-за отсутствия хотя бы некоторых необходимых условий [Бронштейн М. П. Социальные проблемы информатики. — М., 1990, стр. 32].

В соответствии с современными научными представлениями системы разработки и принятия хозяйственных решений должны сочетать формальные и неформальные методы, взаимоусиливающие и взаимодополняющие друг друга. Формальные методы являются прежде всего средством научно обоснованной подготовки материала для действий человека в процессах управления. Это позволяет продуктивно использовать опыт и интуицию человека, его способности решать плохо формализуемые задачи.

Заключение

В настоящее время математика и информатика играют очень важную роль в проведении гуманитарных исследований.

Математика со своей стороны предлагает исследователю ряд математических методов, позволяющих не только получить числовые характеристики исследуемого объекта, но и промоделировать его поведение под влиянием различных факторов, что имеет огромное значение.

Информатика предоставляет инструментарий, позволяющий исследователю многократно ускорить процесс проведения исследований. Применение специализированного программного обеспечения позволяет повысить точность и сократить трудоемкость, позволяет проводить многовариантные обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.

Таким образом, взаимодействие математики и информатики в проведении гуманитарных исследований позволяет качественно повысить уровень исследований, получить наиболее приближенные к реальности результаты и затратить минимальное количество времени как на проведение исследований, так и на обработку полученных результатов.

При моделировании сложных объектов (систем) рассматривают: макромоделирование - моделирование системы в целом на уровне подсистем; микромоделирование - моделирование систем или подсистем на уровне элементов.

Модель и моделирование – это универсальные понятия, атрибуты одного из наиболее мощных методов познания в любой профессиональной области, познания объекта, процесса, явления (через модели и моделирование). Модели и моделирование объединяют специалистов различных областей, работающих над решением межпредметных проблем, независимо от того, где эта модель и результаты моделирования будут применены. Модель – это некоторое представление или описание оригинала (объекта, процесса, явления), которое при определенных предложениях, гипотезах о поведении оригинала позволяет замещать оригинал для его лучшего изучения, исследования, описания его свойств. Пример. Рассматривая физическое тело, брошенное с высоты h и падающее свободно в течение t времени, можно записать соотношение: h = gt2/2 . Это физико-математическая модель системы (математическая модель физической системы) пути при свободном падении тела. При построении этой модели приняты следующие гипотезы: 1) падение происходит в вакууме (то есть коэффициент сопротивления воздуха равен нулю); 2) ветра нет; 3) масса тела неизменна; 4) тело движется с одинаковым постоянным ускорением g в любой точке. Слово "модель" (лат. modelium) означает "мера", "способ", "сходство с какой-то вещью". Проблема моделирования состоит из трех взаимосвязанных задач: построение новой (или адаптация известной) модели; исследование модели (разработка метода исследования или адаптация, применение известного); использование (на практике или теоретически) модели. Схема построения модели М системы S с входными сигналами X и выходными сигналами Y изображена на рис. 13.1.

Рис. 13.1. Схема построения модели

Если на вход М поступают сигналы из X и на входе появляются сигналы из Y, то задан закон, правило f функционирования модели, системы.

Классификацию моделей проводят по различным критериям.

Модель – статическая, если среди параметров описания модели нет (явно) временного параметра.

Модель – динамическая, если среди параметров модели явно выделен временной параметр.

Модель – дискретная, если описывает поведение оригинала лишь дискретно, например, в дискретные моменты времени (для динамической модели).

Модель – непрерывная, если описывает поведение оригинала на всем промежутке времени.

Модель – детерминированная, если для каждой допустимой совокупности входных параметров она позволяет определять однозначно набор выходных параметров; в противном случае – модель недетерминированная, стохастическая (вероятностная).

Модель – функциональная, если представима системой функциональных соотношений (например, уравнений).

Модель – теоретико-множественная, если представима некоторыми множествами и отношениями их и их элементов.

Модель – логическая, если представима предикатами, логическими функциями и отношениями.

Модель – инфрмационно-логическая, если она представима информацией о составных элементах, подмоделях, а также логическими отношениями между ними.

Модель – игровая, если она описывает, реализует некоторую игровую ситуацию между элементами (объектами и субъектами игры).

Модель – алгоритмическая, если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование, развитие. Введение такого, на первый взгляд, непривычного типа моделей (действительно, кажется, что любая модель может быть представлена алгоритмом ее исследования), на наш взгляд, вполне обосновано, так как не все модели могут быть исследованы или реализованы алгоритмически.

Модель – графовая, если она представима графом (отношениями вершин и соединяющих их ребер) или графами и отношениями между ними.

Модель – иерархическая (древовидная), если она представима иерархической структурой (деревом).

Модель – языковая, лингвистическая, если она представлена некоторым лингвистическим объектом, формализованной языковой системой или структурой. Иногда такие модели называют вербальными, синтаксическими и т.п.

Модель – визуальная, если она позволяет визуализировать отношения и связи моделируемой системы, особенно в динамике.

Модель – натурная, если она есть материальная копия оригинала.

Модель – геометрическая, если она представима геометрическими образами и отношениями между ними.

Модель – имитационная, если она построена для испытания или изучения, проигрывания возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели.

Есть и другие типы моделей.

Пример. Модель F = am – статическая модель движения тела по наклонной плоскости. Динамическая модель типа закона Ньютона: F(t) = a(t)m(t) или, еще более точно и лучше, F(t)=s''(t)m(t). Если рассматривать только t = 0.1, 0.2, …, 1 (с), то модель St = gt2/2 или числовая последовательность S0 = 0, S1 = 0.01g/2, S2 = 0.04g, …, S10 = g/2 может служить дискретной моделью движения свободно падающего тела. Модель S = gt2/2, 0 < t < 10 непрерывна на промежутке времени (0;10).

Пусть модель экономической системы производства товаров двух видов 1 и 2, соответственно, в количестве x1 и x2 единиц и стоимостью каждой единицы товара a1 и a2 на предприятии описана в виде соотношения a1x1 + a2x2 = S , где S – общая стоимость произведенной предприятием всей продукции (вида 1 и 2). Можно ее использовать в качестве имитационной модели, определяя общую стоимость S в зависимости от тех или иных значений объемов производимых товаров. Приведенные выше физические модели – детерминированные.

Если в модели S= gt2/2, 0 < t < 10 мы учтем случайный параметр – порыв ветра с силой p при падении тела, например, просто так: S(p) = g(p)t2/2, 0 < t < 10 , то мы получим стохастическую модель (уже не свободного!) падения. Это – также функциональная модель.

Для множеств X = {Николай, Петр, Николаев, Петров, Елена, Екатерина, Михаил, Татьяна} опишем отношения Y: "Николай – супруг Елены", "Екатерина – супруга Петра", "Татьяна – дочь Николая и Елены", "Михаил – сын Петра и Екатерины". Тогда множества X и Y могут служить теоретико-множественной моделью двух семей.

Тип модели зависит от связей и отношений его подсистем и элементов, окружения, а не от его физической природы.

Пример. Математические описания (модели) динамики эпидемии инфекционной болезни, радиоактивного распада, усвоения второго иностранного языка, выпуска изделий производственного предприятия и т.д. являются одинаковыми с точки зрения их описания, хотя процессы различны.

Основные свойства любой модели:

· целенаправленность;

· конечность;

· упрощенность;

· приблизительность;

· адекватность;

· информативность;

· полнота;

· замкнутость и др.

Жизненный цикл моделируемой системы:

· сбор информации;

· проектирование;

· построение;

· исследование;

· оценка;

· модификация.

Наука моделирования состоит в разделении процесса моделирования (системы, модели) на этапы (подсистемы, подмодели), детальном изучении каждого этапа, взаимоотношений, связей, отношений между ними и затем эффективного описания их с максимально возможной степенью формализации и адекватности.

Приведем примеры применения математического, компьютерного моделирования в различных областях:

· энергетика: управление ядерными реакторами, моделирование термоядерных процессов, прогнозирование энергетических процессов, управление энергоресурсами и т.д.;

· экономика: моделирование, прогнозирование экономических и социально-экономических процессов, межбанковские расчеты, автоматизация работ и т.д.;

· космонавтика: расчет траекторий и управления полетом космических аппаратов, моделирование конструкций летательных аппаратов, обработка спутниковой информации и т.д.;

· медицина: моделирование, прогнозирование эпидемий, инфекционных процессов, управление процессом лечения, диагностика болезней и выработка оптимальных стратегий лечения и т.д.;

· производство: управление техническими и технологическими процессами и системами, ресурсами (запасами), планирование, прогнозирование оптимальных процессов производства и т.д.;

· экология: моделирование загрязнения экологических систем, прогноз причинно-следственных связей в экологической системе, откликов системы на те или иные воздействия экологических факторов и т.д.;

· образование: моделирование междисциплинарных связей и систем, стратегий и тактик обучения и т.д.;

· военное дело: моделирование и прогнозирование военных конфликтов, боевых ситуаций, управления войсками, обеспечение армий и т.д.;

· политика: моделирование и прогнозирование политических ситуаций, поведения коалиций различного характера и т.д.;

· социология, общественные науки: моделирование и прогнозирование поведения социологических групп и процессов, общественного поведения и влияния, принятие решений и т.д.;

· СМИ: моделирование и прогнозирование эффекта от воздействия тех или иных сообщений на группы людей, социальные слои и др.;

· туризм: моделирование и прогнозирование потока туристов, развития инфраструктуры туризма и др.;

· проектирование: моделирование, проектирование различных систем, разработка оптимальных проектов, автоматизация управления процессом проектирования и т.д.

Современное моделирование сложных процессов и явлений невозможно без компьютера, без компьютерного моделирования.

Компьютерное моделирование – основа представления (актуализации) знаний как в компьютере, так и с помощью компьютера и с использованием любой информации, которую можно актуализировать с помощью ЭВМ.

Разновидность компьютерного моделирования – вычислительный эксперимент, осуществляемый экспериментатором над исследуемой системой или процессом с помощью орудия эксперимента – компьютера, компьютерной технологии. Вычислительный эксперимент позволяет находить новые закономерности, проверять гипотезы, визуализировать события и т.д.

Компьютерное моделирование от начала и до завершения проходит следующие этапы.

1. Постановка задачи.

2. Предмодельный анализ.

3. Анализ задачи.

4. Исследование модели.

5. Программирование, проектирование программы.

6. Тестирование и отладка.

7. Оценка моделирования.

8. Документирование.

9. Сопровождение.

10. Использование (применение) модели.

Классификация моделей

Модели могут быть относительно полными и неполными. Теория подобия утверждает, что абсолютное подобие может иметь место лишь при замене объекта точно таким же. Но тогда теряется смысл моделирования.

Полная модель характеризует все основные свойства объекта во времени и в пространстве.

Неполная модель характеризует ограниченную часть свойств объекта.

Систематизация моделей приведена в таблице 2.

Таблица 2 - Модели систем

Модели систем

Детерминированная Стохастическая
Статическая Динамическая
Цифровая (Дискретная) Аналоговая (Непрерывная)
Мысленная Реальная
Наглядная Символьная Математическая Натуральная Искусственная

 

1.4. Имитационное моделирование

При конструировании модели любого физического объекта в начале разрабатывается его физическая модель, в которой описывается принцип действия. Затем разрабатывается математическая модель, в которой устанавливаются количественные зависимости между входными и выходными параметрами объекта. На основе математической модели разрабатывается вычислительная модель, представляющая собой программу для ЭВМ. Имея вычислительную модель, можно проводить вычислительный эксперимент - исследование характеристик объекта путём многократного выполнения программы вычислительной модели при разных исходных данных.

Если движение и преобразование информации в рамках вычислительной модели имитирует физические процессы в объекте моделирования, то вычислительный эксперимент называется имитационным моделированием.

Итерационный процесс разработки моделирования отражён на рисунке. Если результаты вычислительного эксперимента радикально не согласуются с результатами физического эксперимента, то выдвигается новая гипотеза физической модели. Если результаты вычислительного эксперимента согласуются с результатами физического эксперимента, но погрешность превышает допустимые нормы, то корректируется математическая модель. Если же процесс моделирования недостаточно робастный и требует от пользователя много трудовых затрат, а от ЭВМ - больших ресурсов, то требуется корректировка вычислительной модели.

При работе с моделью проектировщик задает как входные воздействия, так и внутренние параметры системы, определяющие преобразовательные свойства последней.

Процесс анализа некоторой системы с помощью вычислительной модели показан на рисунке 3.

Математически этот процесс можно представить в виде выражения: Y =F{X}

где Х - вектор входных воздействий, т. е. набор числовых значений различных параметров сигналов, поступающих на вход системы;

Y - вектор отклика системы, т.е. набор числовых значений, характеризующих реакцию системы на заданные входные воздействия;

F - обобщённый оператор, характеризующий процессы преобразования информации в модели.

 

Лекция № 2.

 Математические средства представления информации. Различные уровни представления об информации.

Понятие «Информация» является одним из фундаментальных в современной науке и базовым для изучаемой нами информатики. Информацию наряду с веществом и энергией рассматривают в качестве важнейшей сущности мира, в котором мы живем. Однако, если задаться целью формально определить понятие «информация», то сделать это будет чрезвычайно сложно. Аналогичными неопределяемыми понятиями, например, в математике являются «точка» и «прямая». Так можно сделать некоторые утверждения, связанные с этими математическими понятиями, но сами они не могут быть определены с помощью более элементарных понятий.

В простейшем бытовом помещении с термином «информация» обычно ассоциируются некоторые сведения, данные, знания. Информация передается в виде сообщений, определяющих форму и представление передаваемой информации. Примерами сообщений являются музыкальные произведения; телепередачи; команды регулировщика на перекрёстке; текст, распечатанный на принтере; данные, полученные в результате работы сопоставленной вами программы и т.д. При этом предполагается, что имеются «источник информации» и «получатель информации».

Сообщение от источника к получателю передается посредством какой-нибудь среды, являющейся в таком случае «каналом связи». Так при передаче речевого сообщения в качестве такого канала связи можно рассматривать воздух, в котором распространяются звуковые волны, а в случае передачи письменного сообщения (например, текста, распечатанного на принтере) каналом сообщения можно считать лист бумаги, на котором напечатан текст.

Человеку свойственно субъективное восприятие информации через некоторый набор её свойств: важность, достоверность, своевременность, доступность и т. д. В этом смысле одно и тоже сообщение, передаваемое от источника к получателю, может предавать информацию в разной степени. Так, например, вы хотите сообщить о неисправности компьютера. Для инженера из группы технического обслуживания вахтера. Но, в свою очередь, для инженера сообщение «не включается дисплей» содержит информации больше, чем первое, поскольку в большей степени снимает неопределенность, связанную с причиной неисправности компьютера. Как видно, одно и тоже сообщение для различных пользователей несет различную информацию.

 Непрерывная и дискретная информация.

Чтобы сообщение было передано от источника к получателю, необходима некоторая материальная субстанция – носитель информации. Сообщение, передаваемое с помощью носителя, назовем сигналом. В общем случае сигнал – это изменяющийся во времени физический процесс. Такой процесс может содержать различные характеристики (например, при передаче электрических сигналов могут изменяться напряжение и сила тока). Так из характеристик, которая используется для представления сообщений, называется параметром сигнала.

В случае, когда параметр сигнала принимает последовательное во времени конечное число значений (при этом все они могут быть пронумерованы), сигнал называется дискретным, а сообщение, передаваемое с помощью таких сигналов – дискретным сообщением. Информация, передаваемая источником, в этом случае также называется дискретной. Если же источник вырабатывает непрерывное сообщение (соответственно параметр сигнала – непрерывная функция от времени), соответствующая информация называется непрерывной. Пример дискретного сообщения – процесс чтения книги, информация в которой представлена текстом, т. е. дискретной последовательностью отдельных значков (букв). Примером непрерывного сообщения служит человеческая речь, передаваемая звуковой волной; параметром сигнала в этом случае служит давление, создаваемое этой волной в точке нахождения приемника – человеческого уха.

Непрерывное сообщение можно преобразовать в дискретное (такая процедура называется дискретизацией). Для этого из бесконечного множества значений этой функцией (параметр сигнала) выбирается их определенное число, которое приближенно может характеризовать остальные значения.

 Единицы количества информации: вероятностный и объемный подходы.

Определить понятие «количество информации» довольно сложно. В решении этой проблемы существуют 2 основных подхода. Исторически они возникли почти одновременно. В конце 40-ых гг. ХХ века один из основоположников кибернетики американский математик Клод Шеннон развил вероятностный подход к измерению количества информации, а работы по созданию ЭВМ привели к «объемному» подходу.

В двоичной системе счисления знаки 0 и 1 будем называть битами (от английского выражения Binary digits – двоичные цифры). Отметим, что создатели компьютеров отдают предпочтение именно двоичной системе счисления потому, что в техническом устройстве наиболее просто реализовать два противоположных физических состояния: некоторый физический элемент, имеющий 2 различных состояния: намагниченность в двух противоположных направлениях; прибор, пропускающий или нет электрический ток; конденсатор, заряженный или незаряженный и т. п. В компьютере бит является наименьшей возможной единицей информации. Объем информации, записанной двоичными знаками в памяти компьютера или на внешнем носителе информации подсчитывается просто по количеству требуемых для такой записи двоичных символов.

 Для удобства использования введены более крупные, чем бит, единицы количества информации. Так, двоичное слово из восьми знаков содержит один байт информации, 1024 бита образуют килобайт (Кбайт), 1024 килобайта – мегабайт (Мбайт), а 1024 мегабайта – гигабайт (Гбайт).

Между вероятностным и объемным количеством информации соотношение не однозначное. Далеко не всякий текст, записанный двоичными символами, допускает измерение объема информации в кибернетическом смысле, но заведомо допускают его в объемном. Далее, если некоторое сообщение допускает измеримость количества информации в обоих смыслах, то они не обязательно совпадают, при этом кибернетическое количество информации не может быть больше объемного.

 Информация и физический мир.

 Информацию следует считать особым видом ресурса, при этом имеется в виду толкование «ресурса» как запаса неких знаний материальных предметов или энергетических, структурных или каких – либо других характеристик предмета. В отличие от ресурсов, связанных с материальными предметами, информационные ресурсы являются неистощимыми и предполагают существенные методы воспроизведения и обновления, чем материальные ресурсы.

Рассмотрим некоторый набор свойств информации:

- запоминаемость;- передаваемость;- преобразуемость;- воспроизводимость;- стираемость.

Свойства запоминаемости – одно из самых важных. Запоминаемую информацию будем называть макроскопической (имея в виду пространственные масштабы запоминающей ячейки и время запоминания). Именно с макроскопической информацией мы имеем дело в реальной практике.

Передаваемость информации с помощью каналов связи (в том числе с помехами) хорошо исследовано в рамках теории информации К. Шеннона. В данном случае имеется в виду несколько иной аспект – способность информации к копированию, т.е. к тому, что она может быть «запомнена» другой макроскопической системой и при этом остается тождественной самой себе. Очевидно, что количество информации не должно возрастать при копировании.

Воспроизводимость информации тесно связана с ее передаваемостью и не является ее независимым базовым свойством. Если передаваемость означает, что не следует считать существенными пространственные отношения между частями системы, между которыми передается информация, то воспроизводимость характеризует неиссякаемость и неистощимость, т.е., что при копировании информация остается тождественной самой себе.

Свойство информации – преобразуемость. Оно означает, что информация может менять способ и форму своего существования. Копируемость есть разновидность преобразования информации, при котором его количество не меняется. В общем случае количество информации в процессах преобразования меняется, но возрастать не может.

Свойство стираемости информации также не является независимым. Оно связано с таким преобразованием информации (передачей), при котором ее количество уменьшается и становится равным нулю.

Подводя итог отметим, что предпринимаются усилия ученых, представляющих самые разные области знаний, построить единую теорию, которая призвана формализовать понятие информации и информационного процесса, описать превращение информации в процессах самой разной природы. Движение информации есть сущность процессов управления, ее способности к самодвижению. С момента возникновения кибернетики управление рассматривается применительно ко всем формам движения материи, а не только к высшим (биологической и социальной). Явное проявление движения в неживых – искусственных (технических) и естественных (природных) – системах также обладают общими признаками управления, хотя их исследуют в химии, физике, механике в энергетической, а не в информационной системе представлений. Информационные аспекты в таких системах составляют предмет новой междисциплинарной науки – синергетики.

Подходы к измерению информации.

Информация – это содержимое нашей памяти, ибо человеческая память и есть средство хранения знаний. Разумно назвать такую информацию внутренней, оперативной информацией, которой обладает человек. Однако люди хранят информацию не только в собственной памяти, но и в записях на бумаге, на магнитных носителях и пр. такую информацию можно назвать внешней (по отношению к человеку). Чтобы человек мог ей воспользоваться (например, приготовить блюдо по кулинарному рецепту), он должен сначала прочитать рецепт, т. е. обратить во внутреннюю форму, а затем уже производить какие-то действия.

«Информация для человека – это знания» и запахи, и вкусы, и тактильные (осязательные) ощущения тоже несут информацию человеку. Обоснование этому очень простое: раз м



2019-07-03 504 Обсуждений (0)
Информатика в гуманитарных исследованиях 0.00 из 5.00 0 оценок









Обсуждение в статье: Информатика в гуманитарных исследованиях

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (504)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.015 сек.)