Распределение вероятностей функции одной случайной величины
65.1. Пусть случайная величина имеет плотность вероятности и функция одной переменной , , является взаимно однозначной, тогда плотность вероятности случайной величины определяется соотношением: , (65.1) где - функция, обратная функции . Вывод формулы (65.1) основан на соотношениях (64.4) и (64.6). Поскольку функция - взаимно однозначная, то эта функция или монотонно возрастающая или монотонно убывающая . Очевидны соотношения: , (65.2) . (65.3) Пусть , - функции распределения вероятностей случайных величин и . Если , тогда используя (65.2), . (65.4) Продифференцируем по равенство (65.4), тогда . (65.5) Аналогично при справедливо равенство (65.3), поэтому (65.6) Отсюда: . (65.7) Теперь из соотношений (65.5) и (65.7) следует (65.1). Существенным условием при выводе формулы (65.1) является свойство взаимной однозначности функции . Примерами таких функций являются: 1). Линейная функция , где , - числа, при этом обратная функция имеет вид ; 2). Экспонента - , откуда обратная функция , , и другие. Однако условие взаимной однозначности функции может нарушаться, например, для функции обратная функция , - двузначная. При этом рассматриваются две функции и , , которые называются первая и вторая ветви обратного преобразования . Более сложный пример: . Здесь обратная функция – многозначная.
65.2. Рассмотрим модификацию формулы (65.1) на случай многозначного обратного преобразования . Для этого на области определения функции выделим неперекрывающиеся интервалы , - целое, на которых , тогда на интервалах вида выполняется условие . Функция , для , монотонная возрастающая, а для - монотонная убывающая. Поэтому для каждого из указанных интервалов существует однозначная обратная функция по отношению к функции . Пусть функция для имеет обратную функцию вида , , очевидно - монотонная возрастающая, поскольку обратная ей - монотонная возрастающая. Аналогично обозначим через - функцию со значениями , обратную к на интервале . Очевидно - монотонная убывающая. Функция называется -я ветвь обратного преобразования функции . Теперь по формуле сложения вероятностей для несовместных событий: (65.8) где суммирование ведется по всем ветвям обратного преобразования. На рис. 65.1. представлен простой пример функции , у которой ветви обратного преобразования: со значениями , и - со значениями . На интервале функция - монотонно возрастающая, а на интервале функция - монотонная убывающая. Равенство (65.8) в этом случае принимает вид: .
Рис. 65.1. Пример преобразования случайной величины.
Представим вероятности в (65.8) через плотности вероятностей, тогда: . (65.9) Дифференцируя по обе части (65.9), получим (65.10) или , (65.11) где суммирование по ведется по всем ветвям обратного преобразования.
65.3. Рассмотрим примеры вычисления плотности вероятности случайной величины по формуле (65.11). Пусть - линейное преобразование случайной величины . Функция - взаимно однозначная, поэтому обратное преобразование имеет одну ветвь и сумма в (65.11) содержит одно слагаемое. Поскольку , то (65.11) принимает вид: . (65.12) Рассмотрим квадратичное преобразование . Обратное преобразование имеет две ветви и . Поэтому сумма (65.11) состоит из двух слагаемых. Вычисляя, для , получаем: (65.13) Пусть и случайная величина имеет равномерное распределение вероятностей на интервале , с плотностью , если , и при . Обратное преобразование имеет две ветви: , а также . Вычисление производных и подстановка в (65.11) приводит к результату: . (65.14) На рис. 65.2. представлен график плотности косинус-преобразования равномерно распределенной случайной величины. Таким образом, исходная
Рис. 65.2. Плотность вероятности косинус-преобразования.
исходная величина и преобразованная величина могут иметь совершенно непохожие плотности вероятности.
Популярное: Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (213)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |