Построение частотных характеристик исходной САУ
Построение частотных характеристик выполняется в среде MathCAD. Частотные характеристики разомкнутой исходной системы.
Амплитудно-фазо-частотная характеристика.
ω ∈ (0 ; 1000) Рисунок 1.2.1.1 — АФЧХ разомкнутой системы
Таблица 1.2.1.1 — Данные для построения АФЧХ разомкнутой системы
Амплитудно-частотная характеристика.
ω ∈ (0 ; 100) Рисунок 1.2.1.2 — АЧХ разомкнутой системы
Таблица 1.2.1.2 — Данные для построения АЧХ разомкнутой системы
Фазо-частотная характеристика.
ω ∈ (0 ; 100)
Рисунок 1.2.1.3 — ФЧХ разомкнутой системы
Таблица 1.2.1.3 — Данные для построения ФЧХ разомкнутой системы
Логарифмическая амплитудно-частотная характеристика.
ω ∈ (0,1 ; 1000)
Рисунок 1.2.1.4 — ЛАЧХ разомкнутой системы
Таблица 1.2.1.4 — Данные для построения ЛАЧХ разомкнутой системы
Логарифмическая фазо-частотная характеристика.
ω ∈ (0,1 ; 1000)
Рисунок 1.2.1.5 — ЛФЧХ разомкнутой системы
Таблица 1.2.1.5 — Данные для построения ЛФЧХ разомкнутой системы
Частотные характеристики замкнутой исходной системы. Амплитудно-фазо-частотная характеристика. ω ∈ (0 ; 1000) Рисунок 1.2.2.1 — АФЧХ замкнутой системы
Таблица 1.2.2.1 — Данные для построения АФЧХ замкнутой системы
Амплитудно-частотная характеристика.
ω ∈ (0 ; 100) Рисунок 1.2.2.2 — АЧХ замкнутой системы
Таблица 1.2.2.2 — Данные для построения АЧХ замкнутой системы
Фазо-частотная характеристика.
ω ∈ (0 ; 100)
Рисунок 1.2.2.3 — ФЧХ замкнутой системы
Таблица 1.2.2.3 — Данные для построения ФЧХ замкнутой системы
Логарифмическая амплитудно-частотная характеристика.
ω ∈ (0.1 ; 1000)
Рисунок 1.2.2.4 — ЛАЧХ замкнутой системы
Таблица 1.2.2.4 — Данные для построения ЛАЧХ замкнутой системы
Логарифмическая фазо-частотная характеристика.
ω ∈ (0,1 ; 1000)
Рисунок 1.2.2.5 — ЛФЧХ замкнутой системы Таблица 1.2.2.5 — Данные для построения ЛФЧХ замкнутой системы
Анализ устойчивости САУ. Критерий Михайлова. Для построения годографа Михайлова, необходимо представить характеристическое уравнение передаточной функции замкнутой системы в комплексной форме, заменив переменную s на j ·ω, и разбив получившееся представление на вещественную и мнимую части. Эта операция производилась на этапе разбиения передаточной функции замкнутой системы на вещественную и мнимую, поэтому, воспользуемся её результатами: — вещественная часть; — мнимая часть. Теперь, строим годограф Михайлова на комплексной плоскости: ω ∈ (0 ; 100) Рисунок 1.3.1.1 — годограф Михайлова Таблица 1.3.1.1 — Данные для построения годографа Михайлова
Вектор Михайлова повернулся вокруг начала координат в положительном направлении и ушёл в бесконечность в третьем квадранте, что соответствует порядку характеристического уравнения, а это значит, что, согласно критерию Михайлова, система является устойчивой. 1.3.2 Критерий Гурвица. Характеристическое уравнение передаточной функции замкнутой системы:
.
Коэффициенты характеристического уравнения для определителя Гурвица нумеруем соответственно показателям степени переменной при них: a0=2; a1=0,18; a2=0,008; a3=0,000096; Определитель Гурвица: Подставляя полученные значения, вычисляем его: Главный определитель Гурвица положителен. Аналогично исследуем все оставшиеся миноры.
Учитывая положительность всех диагональных миноров, заключаем устойчивость системы. Критерий Рауса. Характеристическое уравнение передаточной функции замкнутой системы:
.
Коэффициенты характеристического уравнения для таблицы Рауса нумеруем соответственно показателю степени переменной при них:
a0=2; a1=0,18; a2=0,008; a3=0,000096;
Таблица 1.3.1 — Таблица Рауса.
Так как все коэффициенты первого столбца таблицы Рауса положительны, можно сделать вывод об устойчивости замкнутой системы. Критерий Найквиста. Здесь используется АФЧХ разомкнутой системы: Рисунок 1.3.4.1 — годограф Найквиста При стремлении частоты в бесконечность, годограф приходит в начало координат, закручиваясь по часовой стрелке, и не охватывает точку с координатами (–1 ; j0), что свидетельствует об устойчивости как разомкнутой, так и замкнутой системы.
Все критерии оценки устойчивости показали, что система устойчива и в замкнутом, и в разомкнутом состоянии.
Популярное: Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (562)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |