Мегаобучалка Главная | О нас | Обратная связь


Спектральное разложение стационарных случайных функций (процессов) в непрерывный спектр дисперсии



2019-12-29 358 Обсуждений (0)
Спектральное разложение стационарных случайных функций (процессов) в непрерывный спектр дисперсии 0.00 из 5.00 0 оценок




Перейдём к рассмотрению непрерывного спектра дисперсий стационарной случайной функции X(t).

Для этого будем рассматривать X(t) при T ® ¥. Тогда расстояния между опорными частотами  будут неограниченно уменьшаться, так как при .

При этом дискретный спектр дисперсии будет неограниченно приближаться к непрерывному, в котором бесконечно малому интервалу частот Dwk = wk – wk–1 будет соответствовать элементарная дисперсия dk(wk).

Прежде, чем перейти к пределу, рассмотрим допредельный случай, когда интервал Dw ® 0, но ещё не равен нулю (рис. 4.6). Физический смысл мы рассматривали ранее.

Рис. 4.6. Дискретный спектр дисперсий

Примем следующие допущения:

1) по оси абсцисс (ось частот) отложим отрезки :

Рис. 4.7. Средняя плотность дисперсий

2) по оси ординат (ось дисперсий) будем откладывать среднюю плотность дисперсии – дисперсию dk, отнесённую к величине Dw

                                               ,                                      (4.30)

т.е. на каждом отрезке Dw как на основании построим прямоугольник площадью dk. Это напоминает гистограмму статистического распределения случайной величины.

Таким образом, ордината  имеет физический смысл средней плотности дисперсии и называется спектральной плотностью, т.е.

                                                ,                                       (4.31)

здесь эта величина и есть спектральная плотность процесса X(t).

Очевидно, что сумма площадей всех прямоугольников равна дисперсии Dx случайной функции X(t) в соответствии с приведённой ранее формулой:

                                           .                                 (4.32)

Ранее были получены формулы, выражающие спектральное разложение стационарной случайной функции X(t), t Î [1, T] в дискретный спектр дисперсий:

                                                                           (4.33)

                                                                                         (4.34)

                                             (4.35)

Заменим случайные величины Vk (комплексные амплитуды гармонических колебаний) случайными величинами V(wk)×Dw, т.е.

                                                       (4.36)

Соответственно в формулах (4.34) и (4.35) заменим дисперсии dk произведениями zx(wk)×Dw, т.е.

                                   ;                          (4.37)

                                          .                                 (4.38)

Преобразуем формулу (4.36) для dk. Для этого разделим обе части формулы на величину Dw ¹ 0  и учтём, что:

                 .        (4.39)

Формула (4.36) примет вид:

                                  .                        (4.40)

Осуществим предельный переход:

                                           .

С учётом этого формулы (4.37) и (4.41) примут вид:

                                                              (4.41)

                                                                   (4.42)

                                                                          (4.43)

                                                             (4.44)

Формула (4.43), выражающая корреляционную функцию стационарного случайного процесса через её спектральную плотность, была впервые получена в начале 30-х годов для ограниченного класса случайных процессов американским математиком, «отцом» кибернетики Норбертом Винером (1894-1964). Несколько позже эту формулу для любых стационарных случайных процессов вывел советский математик Александр Яковлевич Хинчин (1894-1959). Поэтому формулы (4.43) и (4.45), связывающие Rx(τ), Sx(w) называют формулами Винера-Хинчина.

Графический смысл предельного перехода от конечного интервала [0, T] к бесконечному при T ® ¥, Dw ® 0 выражается в том, что ступенчатая функция sx(wk) будет неограниченно приближаться к непрерывной функции sx(w), которая будет изображать плотность распределения дисперсии случайных амплитуд по частотам непрерывного спектра.

Непрерывная функция sx(w) называется спектральной плотностью стационарного случайного процесса. sx(w) характеризует частотный состав стационарного случайного процесса X(t) и полностью определяется его корреляционной функцией Rx(τ) (4.45).

Рис. 4.8. Спектральная плотность стационарного случайного процесса

Формула (4.44) представляет собой разложение дисперсии Dx на сумму элементарных слагаемых sx(w)dw, каждая из которых представляет собой дисперсию, приходящуюся на элементарный бесконечно малый интервал частот dw, прилежащей к точке w при (– ¥ < w < ¥).

Если рассматривать спектр дисперсии в физически возможном диапазоне частот w Î [0, ¥), то спектральная плотность Sx(w) в этом диапазоне удваивается по амплитуде с тем, чтобы площадь под кривой спектральной плотности не изменилась.

В отличие от спектральной плотности zx(w), рассматриваемой на всём диапазоне частот, будем рассматривать спектральную плотность только для положительных частот и обозначим ее Sx(w).

С учётом этого дисперсия процесса X(t) будет вычисляться по формуле:

                                             ,                                    (4.45)

где

                             ,                    (4.46)

                                       .                              (4.47)

На практике иногда пользуются так называемой нормированной спектральной плотностью:

                                               ,                                      (4.48)

                                               .                                      (4.49)

Так как Rx(τ) и sx(τ) представляют собой чётные вещественные функции, то иногда формулы (4.47) и (4.48) для Rx(τ) и sx(w) представляют в вещественной форме:

                                     ,                            (4.50)

                                    .                           (4.51)

Выражения (4.51), (4.52) получены на основе равенств

                                       

после подстановки и отбрасывания мнимых частей (слагаемых). Графически связь sx(w) с R(t) можно представить следующим образом (рис. 4.9):

Рис. 4.9. Связь процесса со спектральной плотностью и корреляционной функцией

Чем шире спектр sx(w), тем большие частоты представлены в X(t), т.е. тоньше структура X(t), и быстрее происходят изменения X(t) во времени.

Свойства спектральной плотности:

a) Спектральная плотность действительного стационарного случайного процесса является чётной действительной функцией аргумента w, т.е.

                        sx(w) = – sx(–w), Im sx(w) = 0 – мнимая часть.

б) Дисперсия действительного стационарного случайного процесса равна интегралу от спектральной плотности этого процесса в бесконечных пределах:

                                .

в) Спектральная плотность стационарного случайного процесса – функция неотрицательная, т.е.

                                                   .

Зная спектральный состав случайного процесса, можно рационально конструировать системы различного назначения. Например, сенсорное устройство.

Рис. 4.10. Спектральная плотность сенсорного устройства

[w1, w2] – чувствительность сенсорного устройства.



2019-12-29 358 Обсуждений (0)
Спектральное разложение стационарных случайных функций (процессов) в непрерывный спектр дисперсии 0.00 из 5.00 0 оценок









Обсуждение в статье: Спектральное разложение стационарных случайных функций (процессов) в непрерывный спектр дисперсии

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (358)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.023 сек.)