Мегаобучалка Главная | О нас | Обратная связь  


Понятия о критериях согласия




 

Во многих случаях закон распределения случайной величины неизвестен, но на основании опытных данных делается предположение о виде закона распределения случайной величины Х. Однако для окончательного решения вопроса о виде распределения следует проверить согласуются ли результаты наблюдения с высказанным предположением. При этом, если даже предположение о виде распределения сделано правильно, закон распределения наблюдаемой случайной величины будет отличаться от теоретического закона, т.к. число наблюдений ограничено.

Поэтому следует выяснить: является ли расхождение между статистическим и теоретическим законами распределения только следствием ограниченного числа наблюдений, или оно является чем-то более существенным.

Для решения этой задачи служит критерий согласия. Существует несколько видов критерия согласия: критерий согласия Пирсона, Колмогорова, Смирного, Фишера и т.д.

Для проверки гипотезы о законе распределения случайной величины применим критерий согласия Пирсона или c2.

1. Найдем число

Где - частота каждого интервала или разряда,

n – объем выборки (n = 100),



- теоретическая вероятность попадания случайной величины в i интервал.

 

 

где , - границы интервалов.

 - статистическое математическое ожидание,

 - статистическое среднеквадратическое отклонение.

- функция Лапласа.

Формула (4) следует из формулы вероятности попадания случайной величины Х, распределенной по нормальному закону, в интервал (a;b):


 

2.  Определим число степеней свободы , где K – число интервалов или разрядов, 3 – число связей наложенных при выборе теоретического закона распределения. Связи:

1) Условие полноты ,

2) ,

3)

Замечание: частота mi каждого интервала должна быть не меньше 5 - 8, т.е. в этот интервал должно попадать не меньше 5 - 8 значений случайной величины. Если это не выполняется, то малочисленные интервалы следует объединить в один интервал или присоединить к соседнему, суммируя частоты.

По найденному значению c2 и числу степеней свободы r по таблице вероятностей c2 получим искомое значение вероятности Р и сравним его с выбранным условием значимости β = 0.05. Если Р< 0.05, то гипотезу о выборе теоретического закона распределения следует пересмотреть. Если Р> 0.05, то статистический и теоретический законы распределения наблюдаемой случайной величины согласуются, следовательно, нормальное распределение может быть принято в качестве аппроксимирующего закона. Вычисления сведем в таблицу 6.

 

Таблица

Номер интервала Левая граница интервала Правая граница интервала mi npi  

0

 

-8,66

-2,7006

-0,4965

 

 

 

 

1

-8,66

-4,736

-1,0092

-0,3436

0,1530

11

15,2977

1,2074

2

-4,736

-3,428

-0,4454

-0,1720

0,2702

20

27,0156

1,8218

3

-3,428

-2,12

0,1184

0,0471

0,2191

26

21,9110

0,7631

4

-2,12

-0,812

0,6822

0,2524

0,2053

18

20,5320

0,3123

5

-0,812

0,496

1,2460

0,3936

0,1412

14

14,1174

0,0010

6

0,496

4,42

2,9374

0,4983

0,1047

10

10,4726

0,0213

4,1269

 

 

Определим число степеней свободы .

K = 6, т.к. произошло объединение трёх первых и трёх последних интервалов в один, так как частота mi каждого интервала должна быть не меньше 5 - 8.

По найденному значению c2 и числу степеней свободы r по таблице вероятностей c2 получим искомое значение вероятности Р = 0,25.

Сравним его с выбранным уравнением значимости β = 0,05: 0,25 > 0,05, Р > β.

Вывод: статистический и теоретический законы распределения наблюдаемой случайной величины согласуются, следовательно, нормальное распределение может быть принято в качестве аппроксимирующего закона.


Список литературы

 

1.Гмурман В.Е Теория вероятностей и математическая статистика.

2.Гмурман В.Е Руководство к решению задач по теории вероятностей и математической статистике.

3.Данко П.Е.,Попов А.Г. Высшая математика в упражнениях и задачах.

4.Пискунов Н.С. Дифференциальное и интегральное исчисления. Т 2.

Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Читайте также:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (101)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.017 сек.)
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7