Мегаобучалка Главная | О нас | Обратная связь


Открытие неевклидовой геометрии



2019-12-29 240 Обсуждений (0)
Открытие неевклидовой геометрии 0.00 из 5.00 0 оценок




Начальный период

Вплоть до VI века до н. э. греческая математика ничем выдающимся не прославилась. Были, как обычно, освоены счёт и измерение. Греческая нумерация (запись чисел), как позже римская, была аддитивной, то есть числовые значения цифр складывались. Первый её вариант (аттическая, или геродианова) содержали буквенные значки для 1, 5, 10, 50, 100 и 1000. Соответственно была устроена и счётная доска (абак) с камешками. Кстати, термин калькуляция (вычисление) происходит от calculus — камешек. Особый дырявый камешек обозначал нуль.

Позднее вместо аттической нумерации была принята алфавитная — первые 9 букв греческого алфавита обозначали цифры от 1 до 9, следующие 9 букв — десятки, остальные — сотни. Чтобы не спутать числа и буквы, над числами рисовали чёрточку. Числа, большие 1000, записывали позиционно, помечая дополнительные разряды специальным штрихом (внизу слева). Специальные пометки позволяли изображать и числа, большие 10000.

В VI веке до н. э. «греческое чудо» начинается: появляются сразу две научные школы — ионийцы (Фалес Милетский, Анаксимен, Анаксимандр) и пифагорейцы. О достижениях ранних греческих математиков мы знаем в основном по комментариям позднейших авторов, преимущественно Евклида, Платона и Аристотеля.

Фалес, богатый купец, во время торговых поездок, видимо, хорошо изучил вавилонскую математику и астрономию. Ионийцы дали первые доказательства геометрических теорем.

Однако главная роль в деле создания античной математики принадлежит пифагорейцам.

3. ПАРАДОКСЫ ЗЕНОНА

 

Зено́н Эле́йский (др.-греч. Ζήνων ὁ Ἐλεάτης) (ок. 490 до н. э. — ок. 430 до н. э.), древнегреческий философ, ученик Парменида. Родился в Элее. Знаменит своими апориями, доказывающими невозможность движения, пространства и множества.

Удар по пифагореизму нанёс Зенон Элейский, предложив ещё одну тему для многовековых размышлений математиков. Он высказал более 40 парадоксов (апорий), наиболее знамениты четыре (см. список апорий). Вопреки многократным попыткам их опровергнуть и даже осмеять, они, тем не менее, до сих пор служат предметом серьёзного анализа. Здесь затронуты самые деликатные вопросы оснований математики — конечность и бесконечность, непрерывность и дискретность. Математика тогда считалась средством познания реальности, и суть споров можно было выразить как неадекватность непрерывной, бесконечно делимой математической модели физически дискретной материи.

Апории Зенона

Современники упоминали 40 апорий Зенона, до нас дошли 9, из них наиболее известны 4, обсуждаемые у Аристотеля.

Ахиллес и черепаха— одна из апорий Зенона.

Быстроногий Ахиллес никогда не догонит черепаху, если в начале движения черепаха находится впереди на некотором расстоянии от него.

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится от неё на расстоянии в 1 километр. За то время, за которое Ахиллес пробежит этот километр, черепаха проползёт 100 метров. Когда Ахиллес пробежит 100 метров, черепаха проползёт ещё 10 метров, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

· Дихотомия (апория)

Дихотомия — одна из апорий Зенона Элейского, утверждающая логическую невозможность движения.

Чтобы преодолеть путь, нужно сначала преодолеть половину пути, а чтобы преодолеть половину пути, нужно сначала преодолеть половину половины, и так до бесконечности. Эта апория основана на бесконечной делимости пространства и предположении, что для совершения бесконечного количества действий необходимо бесконечное время.

Из-за того что ситуация сформулирована словесно, а потому допускает различные толкования, имеются разные объяснения, но математическое объяснение гласит:
«Так как меньшие отрезки проходятся за меньшее время, то общее время равно сумме сходящегося ряда 1/2+1/4+1/8+…, то есть единице.»

· Стрела

«Стрела» — одна из апорий Зенона Элейского, утверждающая логическую невозможность движения.

Летящая стрела неподвижна, так как в каждый момент времени она занимает равное себе положение, то есть покоится; поскольку она покоится в каждый момент времени, то она покоится во все моменты времени, то есть покоится всегда.

Эта апория направлена против представления о непрерывной величине как о сумме бесконечного числа неделимых частиц.

Современные представления рассматривают стрелу в пространстве с введенными скоростными размерностями и тем самым решают софизм. В таком пространстве движущийся объект не идентичен неподвижному. Впрочем, с точки зрения современной науки, в этой апории есть доля правды (

· Стадион

Пусть по стадиону движутся по параллельным прямым равные массы с равной скоростью, но в противоположных направлениях. Пусть ряд А1, А2, А3, А4 обозначает неподвижные массы, ряд В1, В2, В3, В4 — массы, движущиеся вправо, а ряд Г1, Г2, Г3, Г4 — массы, движущиеся влево. Будем теперь рассматривать массы Аi, Вi, Гi как неделимые. В неделимый момент времени Вi и Гi проходят неделимую часть пространства. Действительно, если бы в неделимый момент времени некоторое тело проходило бы более одной неделимой части пространства, то неделимый момент времени был бы делим, если же меньше, то можно было бы разделить неделимую часть пространства.

Рассмотрим теперь движение неделимых Вi и Гi друг относительно друга: за два неделимых момента времени Вi пройдёт две неделимые части Аi и одновременно отсчитает четыре неделимые части Гi, то есть неделимый момент времени окажется делимым.

Апория направлена против представления о мере отрезка как о сумме мер неделимых.


4. ГЕОМЕТРИЯ ЕВКЛИДА И ЕЕ ПОСТУЛАТЫ.

 

ЭВКЛИД (Euclid c.356-300 ВС)

Эвклид - древнегреческий математик, автор первых дошедших до нас теоретических трактатов по математике. Биографические сведения о жизни и деятельности Эвклида крайне ограничены. Известно, что он родом из Афин, был учеником Платона. Научная деятельность его протекала в Александрии, где он создал математическую школу.

Евклид и его «Начала».

 В течение 2 тысяч лет геометрию узнавали либо из «Начал» Евклида, либо из учебников, написанных на основе этой книги. Об этом человеке история сохранила настолько мало сведений, что нередко высказываются сомнения в самом его существовании. Человек исчез, растворился в веках, остался лишь его труд «Начала».

Евклид с величайшим искусством расположил материал по 13 книгам. Первая книга начинается с 20 «определений», среди них такие: точка есть то, что не имеет частей; линия есть длина без ширины, прямая есть линия, одинаково расположенная относительно всех своих точек; и, наконец, две прямые, лежащие в одной плоскости, называются параллельными, если они, сколь угодно продолженные, не встречаются. Здесь же формулируются пять геометрических постулатов. Вот первые четыре:

1. Чтобы от каждой точки ко всякой другой точке можно было провести прямую линию;

2. Чтобы каждую ограниченную прямую можно было продолжить неограниченно;

3. Чтобы из любого центра можно было описать окружность любым радиусом;

4. Чтобы все прямые углы были равны между собой.

Все четыре постулата очень просты по содержанию. Евклид постулирует здесь абсолютно естественные, понятные истины. Все хорошо. И … . Следует пятый постулат.

«Если при пересечении двух прямых, лежащих в одной плоскости, третьей, сумма внутренних углов меньше 1800, то эти прямые при достаточном продолжении пересекаются, и, притом, с той стороны, с которой эта сумма меньше 1800».

5. СИСТЕМА АКСИОМ. АКСИОМАТИЧЕСКОЕ ОБОСНОВАНИЕ ГЕОМЕТРИИ.

Аксиома утверждение, устанавливающее некоторое свойство и принимаемое без доказательства. Аксиомы возникли из опыта, и опыт же проверяет их истинность в совокупности. Можно построить систему аксиом различными способами. Однако важно, чтобы принятый набор аксиом был минимальным и достаточным для доказательства всех остальных геометрических свойств. Заменяя в этом наборе одну аксиому другой, мы должны будем доказывать заменённую аксиому, так как она теперь уже не аксиома, а теорема.

Исторический процесс развития взглядов на существо математики как науки привел к формированию фундаментальной концепции аксиоматического метода и понятия аксиоматической теории. Суть их состоит в следующем. Выбирается ряд первоначальных понятий, которые не определяются и используются без объяснения их смысла. Вместе с тем, все другие понятия, которые будут использоваться, должны быть строго определены через первоначальные неопределённые понятия и через понятия, смысл которых был определён раньше. Высказывания, определяющее таким способом значение понятия, называется определением, а само понятие, смысл которого определён, носит название определяемого понятия. Евклид сделал попытку строго определить все первоначальные понятия геометрии: точки, прямой, плоскости и т.д. Но совершенно ясно, что эти понятия должны определяться через какие-то другие, те в свою очередь, должны опираться на следующие понятия, и так далее, так что процесс бесконечен. Таким образом, первоначальные понятия аксиоматической теории не определяются.

Совершенно аналогична ситуация и с утверждениями о первоначальных и об определяемых понятиях. Невозможно доказать все истинные утверждения об этих понятиях, потому что при доказательстве нужно опираться на какие-то предыдущие утверждения, при их доказательстве, в свою очередь, - на следующие, и так без конца. Поэтому и здесь необходимо выделить некоторые утверждения и объявить их истинными. Такие утверждения, принимаемые без доказательства, называются аксиомами аксиоматической теории. Совокупность аксиом обозначается буквой . Вопрос о том, какие утверждения о первоначальных понятиях выбираются в качестве аксиом, заслуживает специального рассмотрения. Евклид в качестве пяти своих аксиом (постулатов) выбрал наиболее, на его взгляд, очевидные утверждения о точках и прямых, т.е. такие утверждения, которые многократно подтверждались практическим опытом человечества.

Суть аксиоматического построения математической теории состоит в том, что сначала выбирается ряд первоначальных понятий, который не определяются и используются без объяснения их смысла. Ранее, формулируется ряд первоначальных утверждений. Об этих первоначальных понятиях, которые принимаются без доказательства и которые называются аксиомами. Наконец, исходя из выбранной системы аксиом, доказывают новые утверждения о первоначальных понятиях, а также о понятиях, которые определяются в процессе развития аксиоматической теории. Эти доказываемые утверждения называются теоремами, а совокупность всех теорем, выводимых (доказываемых) из данной системы аксиом, называется аксиоматической теорией, построенной на базе этой системы аксиом.

6. МАТЕМАТИЧЕСКИЕ ДОКАЗАТЕЛЬСТВА.

В математике доказа́тельством называется цепочка логических умозаключений, показывающая, что при каком-то наборе аксиом и правил вывода верно некоторое утверждение. В зависимости от контекста, может иметься в виду доказательство в рамках некоторой формальной системы (построенная по специальным правилам последовательность утверждений, записанная на формальном языке) или текст на естественном языке, по которому при желании можно восстановить формальное доказательство. Доказанные утверждения в математике называют теоремами (в математических текстах обычно подразумевается, что доказательство кем-либо найдено; исключения из этого обычая в основном составляют работы по логике, в которых исследуется само понятие доказательства); если ни утверждение, ни его отрицание ещё не доказаны, то такое утверждение называют гипотезой. Иногда в процессе доказательства теоремы выделяются доказательства менее сложных утверждений, называемых леммами.

Формальными доказательствами занимается специальная ветвь математики — теория доказательств. Сами формальные доказательства математики почти никогда не используют, поскольку для человеческого восприятия они очень сложны и часто занимают очень много места. Обычно доказательство имеет вид текста, в котором автор, опираясь на аксиомы и доказанные ранее теоремы, с помощью логических средств показывает истинность некоторого утверждения. В отличие от других наук, в математике недопустимы эмпирические доказательства: все утверждения доказываются исключительно логическими способами. В математике важную роль играют математическая интуиция и аналогии между разными объектами и теоремами; тем не менее, все эти средства используются учёными только при поиске доказательств, сами доказательства не могут основываться на таких средствах. Доказательства, написанные на естественных языках, могут быть не очень подробными в расчёте на то, что подготовленный читатель сам сможет восстановить детали. Строгость доказательства гарантируется тем, что его можно представить в виде записи на формальном языке (это и происходит при компьютерной проверке доказательств).

Ошибочным доказательством называется текст, содержащий логические ошибки, то есть такой, по которому нельзя восстановить формальное доказательство. В истории математики были случаи, когда выдающиеся учёные публиковали неверные «доказательства», однако обычно их коллеги или они сами довольно быстро находили ошибки. (Одна из наиболее часто неправильно доказывавшихся теорем — Великая теорема Ферма. До сих пор встречаются люди, не знающие о том, что она доказана, и предлагающие новые неверные «доказательства».[источник не указан 258 дней]) Ошибочным может быть только признание доказательством «доказательства» на естественном или формальном языке; формальное доказательство ошибочным не может быть по определению.

7. ИСТОРИЧЕСКИЕ ВОЗНИКНОВЕНИЯ И РАЗВИТИЯ НЕЕВКЛИДОВОЙ ГЕОМЕТРИИ.

Неевклидова геометрия — в буквальном понимании — любая геометрическая система, отличная от геометрии Евклида; однако традиционно термин «Неевклидова геометрия» применяется в более узком смысле и относится только к двум геометрическим системам: геометрии Лобачевского и сферической геометрии.

Как и евклидова, эти геометрии относятся к метрическим геометриям пространства постоянной кривизны. Нулевая кривизна соответствует евклидовой геометрии, положительная — сферической, отрицательная — геометрии Лобачевского.

Открытие неевклидовой геометрии

В первой половине XIX века по пути, проложенному Саккери, пошли сразу три математика: К. Ф. Гаусс, Н. И. Лобачевский и Я. Бойяи. Но цель у них была уже иная — не разоблачить неевклидову геометрию как невозможную, а, наоборот, построить альтернативную геометрию и выяснить её возможную роль в реальном мире. На тот момент это была совершенно еретическая идея; никто из учёных ранее не сомневался, что физическое пространство евклидово. Интересно, что Гаусса и Лобачевского учил в молодости один и тот же учитель — Мартин Бартельс (который, впрочем сам неевклидовой геометрией не занимался).

Первым был Гаусс. Он не публиковал никаких работ на эту тему, но его черновые заметки и несколько писем однозначно подтверждают его понимание неевклидовой геометрии. В 1817 году он писал астроному В. Ольберсу:[20]

Я прихожу всё более к убеждению, что необходимость нашей геометрии не может быть доказана, по крайней мере человеческим рассудком и для человеческого рассудка. Может быть, в другой жизни мы придём к взглядам на природу пространства, которые нам теперь недоступны. До сих пор геометрию приходится ставить не в один ранг с арифметикой, существующей чисто a priori, а скорее с механикой.

В 1818 году в письме к австрийскому астроному Герлингу Гаусс выразил свои опасения:[21]

Я радуюсь, что вы имеете мужество высказаться так, как если бы Вы признавали ложность нашей теории параллельных, а вместе с тем и всей нашей геометрии. Но осы, гнездо которых Вы потревожите, полетят Вам на голову.

Ознакомившись с работой Лобачевского «Геометрические исследования по теории параллельных», Гаусс энергично ходатайствует об избрании русского математика иностранным членом-корреспондентом Гёттингенского королевского общества (что и произошло в 1842 году).

Лобачевский и Бойяи проявили бо́льшую смелость, чем Гаусс, и почти одновременно (Лобачевский — в докладе 1826 года и публикации 1829 года; Бойяи — в письме 1831 года и публикации 1832 года), независимо друг от друга, опубликовали изложение того, что сейчас называется геометрией Лобачевского. Лобачевский продвинулся в исследовании новой геометрии дальше всех, и она в настоящий момент носит его имя. Но главная его заслуга не в этом, а в том, что он поверил в новую геометрию и имел мужество отстаивать своё убеждение (он даже предложил экспериментально проверить V постулат, измерив сумму углов треугольника). [22]

Во вступлении к своей книге «Новые начала геометрии» Лобачевский решительно заявляет:[23]

Всем известно, что в геометрии теория параллельных до сих пор оставалась несовершенной. Напрасное старание со времён Евклида, в продолжении двух тысяч лет, заставили меня подозревать, что в самых понятиях ещё не заключается той истины, которую хотели доказывать и которую проверить, подобно другим физическим законам, могут лишь опыты, каковы, например, астрономические наблюдения.<…> Главное заключение <…> допускает существование геометрии в более обширном смысле, нежели как ее представил нам первый Евклид. В этом пространном виде дал я науке название Воображаемой Геометрии, где как частный случай входит Употребительная Геометрия.

Трагическая судьба Лобачевского, подвергнутого остракизму в научном мире и служебном окружении за слишком смелые мысли, показала, что опасения Гаусса были не напрасны. Но и его борьба была не напрасна. По иронии судьбы торжество смелых идей Лобачевского обеспечил (посмертно) осторожный Гаусс. В 1860-е годы была опубликована переписка Гаусса, в том числе несколько восторженных отзывов о геометрии Лобачевского, и это привлекло внимание к трудам русского математика. В 1868 году выходит статья Э. Бельтрами, который показал, что плоскость Лобачевского имеет постоянную отрицательную кривизну (у евклидовой плоскости кривизна нулевая, у сферы — положительная); очень быстро неевклидова геометрия приобретает легальный научный статус, хотя всё ещё рассматривается как чисто умозрительная.

В конце XIX—начале XX века сначала математики (Бернхард Риман), а затем и физики (Общая теория относительности, Эйнштейн), окончательно покончили с догматом о евклидовой геометрии физического пространства.



2019-12-29 240 Обсуждений (0)
Открытие неевклидовой геометрии 0.00 из 5.00 0 оценок









Обсуждение в статье: Открытие неевклидовой геометрии

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (240)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.013 сек.)