Мегаобучалка Главная | О нас | Обратная связь


Обратимые и необратимые процессы. Энтропия в классической термодинамике.



2019-12-29 227 Обсуждений (0)
Обратимые и необратимые процессы. Энтропия в классической термодинамике. 0.00 из 5.00 0 оценок




 

Понятие энтропии ввел Клаузиус в 1865 г. на основе анализа работы тепловых машин (рис. 1.7.). Любой тепловой двигатель может функционировать лишь при условии обмена теплом с двумя источниками различной температуры, причем газ (рабочее тело) получает тепло Q1 от источника с высокой температурой T1 (нагреватель) и отдает тепло Q2 источнику с низкой температурой T2 (холодильник). Передача тепла холодильнику необходима для того, чтобы привести газ, используемый в тепловых двигателях, в начальное состояние, т.к. для непрерывного действия теплового двигателя цикл должен быть замкнутым. Поэтому к.п.д. тепловых машин: n =(Q1 - Q2)/Q1 =1- Q2/Q1 всегда меньше единицы. Для идеального газа в цикле Карно процессы являются обратимыми (рис. 1.7.), и было показано, что Q1/Q2= T1/T2. Из этого следует, что Q1/T1= Q2/T2 или Q1/T1- Q2/T2 =0. В реальных тепловых машинах процессы являются необратимыми, и, чтобы привести газ в исходное состояние, необходимо передать холодильнику больше тепла, чем в идеальной тепловой машине. Коэффициент полезного действия реальных машин всегда меньше, чем для идеальных и Q1/T1 - Q2/T2 > 0.

 

Рисунок 1.7

Величина S = Q/T, или приведенная теплота, была названа энтропией. Эта величина является функцией состояния термодинамической системы. Изолированные (замкнутые) системы не обмениваются веществом и энергией с окружающим пространством. В таких системах изменение энтропии ΔS = 0 (для обратимых процессов) и ΔS >0 (для необратимых). Все реальные процессы необратимые и поэтому энтропия в изолированной системе для самопроизвольных процессов может только возрастать, что указывает на однонаправленность всех процессов в природе. Этот вывод получил название закона возрастания энтропии.

Примерами обратимых процессов являются: цикл Карно для идеального газа, колебания идеального маятника (без потерь энергии за счет трения). В них при проведении процесса в прямом и обратном направлении система проходит одни и те же состояния и изменение энтропии равно нулю. Примерами необратимых процессов могут быть: расширение газа; диффузия (Рис.2.7), теплопередача (Рис.3.7). Все эти процессы могут проходить самопроизвольно только в одном направлении, в результате которых энтропия возрастает.

 

 

Рисунок 2.7.

 

 

Рисунок 3.7.

Нажмите кнопку Пуск для включения нагрева, а затем повторным нажатием этой кнопки отключите нагрев.

 

Молекулярно - кинетическая теория (МКТ), сумела дать объяснение всем понятиям классической термодинамики за исключение понятия энтропии. В ее основе лежат уравнения классической механики, которые при изменении знака времени не меняются, то есть обратимы. С точки зрения классической механики самопроизвольные процессы, протекающие только в одном направлении, могли бы протекать и в обратном направлении без нарушения ее законов.

 

 



2019-12-29 227 Обсуждений (0)
Обратимые и необратимые процессы. Энтропия в классической термодинамике. 0.00 из 5.00 0 оценок









Обсуждение в статье: Обратимые и необратимые процессы. Энтропия в классической термодинамике.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (227)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)