Мегаобучалка Главная | О нас | Обратная связь


ИЗОЛИРОВАНИЕ ПОДКИСЛЕННЫМ СПИРТОМ



2020-02-03 260 Обсуждений (0)
ИЗОЛИРОВАНИЕ ПОДКИСЛЕННЫМ СПИРТОМ 0.00 из 5.00 0 оценок




Курсовая работа

“Химико-токсикологический анализ”

 

              

 

 

Исполнитель                                                                                                          

Студентка  II– ого курса 5-ой группы                                  Павлович М.В.

 

 

Руководитель

К. х. н. профессор                                                                         Мечковский С.А.

 

Минск 2010

 

Оглавление

1.Введение…………………………………………………………………………………….3

2. 2.1.Понятия «яд», «отравление»…………………………………………..………………5

2.2.План исследования………………………………………………………………………..8

2.2.1.Токсикологический анализ………………………………………………...……….. 8

2.2.2. Предварительные испытания…………………………………………………..……8

2.3. Классификация ядовитых и сильнодействующих веществ в токсикологической химии………………………………………………………………………………...………….15

2.4. Методы изолирования ядов……………………………………………………………

2.4.1. Группа ядовитых и сильнодействующих веществ, изолируемых дистилляцией с водяным паром…………………………………………………………………...………..16

2.4.2. Группа ядовитых и сильнодействующих веществ, изолируемых из биологического материала подкисленным спиртом и подкисленной водой…………………………………………………………………………………………...16

      2.4.2.1. Изолирование подкисленным спиртом……………………………….…..17

     2.4.2.2. Изолирование подкисленной водой………………………………………..20

      2.4.2.3. Изолирование подщелоченной водой…………………….……………….21

2.4.3. Химико-токсикологический анализ биологических объектов на пестициды………………………………………………………………………………………….....22

2.4.4. Группа веществ, изолируемых после минерализации (разрушения) органических веществ………………………………………………………………………………...22

   2.4.4.1.Методы минерализации, имеющие практическое значение………………………………………………………………………………………..….24

    2.4.4.1.1. Минерализация серной и азотной кислотами………………………………………………………………………………….…………24

    2.4.4.1.2. Минерализация серной, азотной и хлорной кислотами…………………………………………………………………………………………….25

    2.4.4.1.3. Минерализация сплавлением с карбонатом и нитратом натрия……………………………………………………………………………………….…25

 2.4.5. Изолирование веществ из биологического материала диализом……………………………………………………………………………………………26

2.4.6. Некоторые вещества, требующие особых методов изолирования….. ………………………………………………………………………………………..……….27

2.5. Противоядия и тактика врача при отравлении…………………………..……………29

2.5.1.Пути попадания яда…………………………………………………………...….. 29

2.5.2. Мероприятия по уточнению яда………………….………………………………30

2.5.3. Антидоты при наиболее распространенных отравлениях………………..…….30

3.Заключение………………………………………………………………………………...34

4.Список литературы……………………………………………………………….……….35

 

ВВЕДЕНИЕ

Объекты химико-токсикологического анализа чрезвычайно разнообразны. Это кровь, моча, рвотные массы, экскременты, внутренние органы трупов людей и животных, волосы, ногти, остатки пищевых продуктов и напитков, фураж, остатки лекар­ственных веществ, пестициды, средства дератизации и бытовой химии, посуда, предметы домашнего обихода, одежда, вода, земля и т. д. Особую трудность для исследования представляют биологиче­ские объекты животного происхождения (внутренние органы трупа, кровь, моча и т. п.).

В большинстве случаев объекты исследования направляют на химико-токсикологический анализ в связи с отравлением или подозрением на отравление с постановкой основного вопроса к химику: содержатся ли те или иные ядовитые или сильнодей­ствующие вещества в доставленном на анализ материале и, если содержатся, то в каких количествах? Могли ли найденные при анализе химические вещества причинить отравление?

В химико-токсикологических лабораториях центров по ле­чению отравлений обычными объектами являются кровь, моча, рвотные массы, промывные воды желудка, иногда экскре­менты. Основная задача исследования в этих случаях — возможность обнаружения и определения химических веществ, вызвав­ших отравление. Результаты химико-токсикологического ана­лиза используются врачами для уточнения диагноза и оказания быстрой и эффективной помощи, для наблюдения за ходом лечения интоксикации и выведением яда и для других целей. Вместе с мочой, рвотными массами и другими объектами на химико-токсикологический анализ могут поступать остатки раз­личных лекарственных препаратов, химических веществ, содер­жимого домашней посуды, пищевых продуктов, части растений и т.п. При химико-токсикологическом исследовании остатков лекарственных препаратов ставятся и решаются вопросы о содержании в них ядовитых веществ, подлинности этих препаратов, о ко­личестве действующих веществ в них и т. п.

При исследовании частей растений в большинстве случаев решаются вопросы о возможной принадлежности этих частей к ядовитым растениям, о том, какие химические вещества в них содержатся, какие признаки отравления они могут вызвать и т. д. Вопросы, связанные с исследованием частей растений, часто решаются химиком совместно с фармакогностом или даже направляются фармакогносту на специальное исследование.

При анализе остатков пищевых продуктов и напитков в боль­шинстве случаев основным является вопрос о том, не содержит ли этот продукт введенных в него ядовитых химических веществ (соединения мышьяка, ртути, фториды и т. п.). Посуда может быть объектом химико-токсикологического исследования при подозрении на отравление через нее. В этих случаях может ста­виться вопрос о возможности извлечения из посуды (луженая, эмалированная, кадмированная и др.) в процессе приготовления или содержания в ней пищи химических веществ, которые могли вредно отразиться на состоянии здоровья человека (свинец, сурьма, кадмий и др.).

Объектами исследования могут оказаться одежда и белье. Эти объекты поступают на химико-токсикологический анализ при подозрениях на обливание (с преступной целью) кислотой, например серной, при наличии на белье или одежде пятен, подо­зрительных на остатки каких-либо химических веществ (краси­тели, пикриновая кислота, нитрат серебра и др.) или рвотных масс. Иногда на химико-токсикологический анализ направляется вода с подозрением на наличие в ней различных химических соединений, которые могли причинить вред здоровью при ее использо­вании для питья или привести к гибели рыбы в водоеме.

Воздух, содержащий те или иные ядовитые химические веще­ства (сероводород, формальдегид, бром, окись углерода и др.), также может быть объектом химико-токсикологического анали­за. Исследование воздуха промышленных предприятий на при­сутствие ядовитых или вредных для здоровья веществ и их ко­личественное определение в настоящее время выросло в особую область — промышленно-санитарную химию, получившую в на­шей стране особенно мощное развитие. Тем не менее, токсиколо­гическая химия и промышленно-санитарная химия не потеряли связи между собой, они являются частями одной и той же дис­циплины и имеют много общего в методах исследования. В от­дельных случаях при нарушении правил техники безопасности или охраны труда вопросы о необходимости исследования воз­духа промышленных предприятий (а также шахт, колодцев, ем­костей) могут быть поставлены и перед химиком, работающим в области токсикологической (судебной) химии. Провизоры как лица, имеющие химическую и биологическую подготовку, успешно развивают промышленно-санитарную химию.

Перечислить все объекты и все вопросы, возникающие перед практическими работниками в области токсикологической хи­мии, не представляется возможным. Иногда их трудно даже предвидеть.

Помимо решения перечисленных выше чисто практических задач, большое место в токсикологической химии принадлежит разработке и усовершенствованию химических, физико-хими­ческих и некоторых физических методов изолирования из раз­ных биологических объектов, очистки, качественного обнаруже­ния и количественного определения различных химических ве­ществ и соединений, на которые токсикология указывает как на яды, а фармакология как на лекарства.

Изучение метаболизма и биотрансформации ядовитых и ле­карственных веществ в организме и трупе и методов химическо­го доказательства продуктов превращения приобретает все больший интерес и значение. В связи с расширяющимися иссле­дованиями метаболизма ядовитых и особенно лекарственных веществ перед провизорами, посвятившими свою деятельность токсикологической химии, неизбежно встанут вопросы о разра­ботке методов синтеза химических веществ, встречающихся в качестве метаболитов, и дальнейших путей их анализа.

Важное значение не только для токсикологической химии, но и для ряда смежных с нею дисциплин приобретает изучение распределения отдельных ядовитых, сильнодействующих и ле­карственных веществ в различных органах и системах, сохра­няемости их в живом организме и в трупе, возможности обнару­жения и определения одних веществ в присутствии других, ча­сто сопутствующих им, и многие другие вопросы, без решения которых невозможно дальнейшее развитие токсикологической химии и химико-токсикологического анализа.

В данной работе будут даны определения понятиям «яд» и «отравление», рассмотрены предварительные испытания на присутствие ядовитых веществ, методы выделения ядовитых веществ, тактика врача при отравлении, а также приведены примеры основных противоядий.

 

 

2.1. ПОНЯТИЯ «ЯД», «ОТРАВЛЕНИЕ»

 

Из сравнительно большого многообразия вопросов, разрешае­мых химико-токсикологическим анализом, особенно часто ста­вится и решается один: о наличии в объекте исследования (с по­следующим количественным определением) химического веще­ства или соединения, которое токсикология рассматривает как «яд».

В токсикологии ядом, или ядовитым веществом, условно называют такое химическое соеди­нение, которое, будучи введено в организм в малых количествах и действуя на него хи­мически или физико-химически при опреде­ленных условиях, способно привести к болезни или смерти.

Под отравлением, или интоксикацией, разу­меют нарушение функций организма под влия­нием ядовитого вещества, что может закон­читься расстройством здоровья или даже смертью.

Понятие «яд», принятое условно в токсикологии, уже, чем это же понятие в общей биологии. Хорошо известно, что ядо­витые вещества могут не только вводиться в организм человека (животного, растения), но и образовываться или накапливаться (Hg, As, Сu и др.) в нем в процессе жизнедеятельности, при не­которых заболеваниях и состояниях (инфекция, нарушение об­мена, неполноценное питание и др.). Организм человека, напри­мер, постоянно вырабатывает гормоны, которые в больших ко­личествах действуют как яды. Наоборот, многие ядовитые ве­щества (соединения мышьяка и ртути, алкалоиды, барбитураты и др.) в малых дозах вводятся в организм в качестве лекарств.

Абсолютных ядов, т. е. химических веществ, способных приво­дить к отравлению в любых условиях, в природе не существует. Химическое вещество становится ядом лишь при определенных условиях. Эти условия разнообразны: ядовитое действие химических ве­ществ связано, прежде всего, с их количеством (дозой), затем с физическими и химическими свойствами, с условиями приме­нения, состоянием организма (возраст, состояние здоровья и др.). Так, в зависимости от дозы одно и то же химическое вещество может быть и ядом, и лекарством. Стрихнин, атропин, морфин, соединения мышьяка, ртути и др. хорошо известны как лекарства. В токсикологии, соответственно и в токсикологиче­ской химии, эти вещества входят в группу «ядовитых» веществ, вопросы об исследовании на которые часто ставятся перед хими­ком.

Физические и химические свойства вещества также оказывают влияние на проявления токсических свойств. Например, сульфат бария при приеме внутрь не ядовит, так как нерастворим в воде и соляной кислоте желудка, а хлорид бария или другая раство­римая соль бария при приеме внутрь ядовита; при введении в желудок двухлористая ртуть (сулема) ядовита, однохлористая — не ядовита, так как не растворяется в жидкостях орга­низма. При введении в организм имеют значение другие веще­ства, вместе с которыми вводится яд в организм. При этом действие одних ядов в присутствии других веществ может уси­ливаться (барбитураты и алкоголь) — проявляется синергизм, а других ядов — ослабляться (кислота и щелочь) — проявляет­ся антагонизм.

В задачу химика входит лишь обнаружение и определение ядовитого вещества в том или ином объекте исследования с при­менением химических, физико-химических, иногда физических и биохимических методов анализа. Решение этой задачи не всегда легко осуществимо. Трудности обнаружения и определения ядовитых веществ в объектах иссле­дования, особенно объектах животного происхождения, в значи­тельной степени обусловлены поведением химических веществ в организме и трупе.

Введенное в организм ядовитое вещество распределяется часто неравномерно: одни из веществ попадают главным образом в кровь, другие распре­деляются по другим органам и тканям.

Организм тем или иным способом борется с введенным ядови­тым веществом; последнее выводится из организма, например, с рвотными массами, мочой, экскрементами и т. п.

Многие химические вещества вступают во взаимодействие с различными жидкостями и тканями организма (соединения металлов с белками образуют альбуминаты, алкалоиды — комп­лексные соли и т. п.); химические вещества органической природы подвергаются в организме многочисленным превра­щениям (метаболизм), протекающим по 4 основным типам: окисление, восстановление, гидролиз и синтез с отдельными био­химическими компонентами организма (с глюкуроновой кисло­той, с остатком серной кислоты). При этом количество превра­щений, протекающих по 3 первым типам, очень велико, по 4-му типу — ограничено; большинство веществ подвергается превра­щениям в организме в две фазы. В первой фазе протекают реак­ции окисления, восстановления и гидролиза, а во второй — син­теза. Для некоторых веществ характерной является лишь одна фаза. Примером может служить метаболизм этилового спирта до ацетальдегида, уксусной кислоты и углекислоты. В процессе метаболизма в подавляющем большинстве случаев образуются менее токсичные вещества, а в отдельных случаях, наоборот, менее токсичные вещества переходят в более токсичные (напри­мер, тиопентал превращается в этаминал).

Из сказанного становится понятным, почему специалист, про­водящий химико-токсикологический анализ биологического ма­териала, в заключении своего исследования никогда не может утверждать об отсутствии того или иного ядовитого вещества в объекте исследования. У него есть возможность говорить лишь об обнаружении или необнаружении искомого вещества в до­ставленном ему материале, а в случае обнаружения и о коли­честве найденного соединения.

При этом химик обязательно должен учитывать методы (раз­решающие возможности методов) изолирования, очистки, обна­ружения и определения вещества и свойства исследуемых ве­ществ. Заключение о том, является ли найденное вещество ядом или не является, делается не химиком, а врачом, в том числе и судебно-медицинским экспертом, судебно-следственными органами (при судебно-химическом исследовании), и даже комиссией различных специалистов с учетом не только резуль­татов химико-токсикологического анализа, но и ряда других ма­териалов: обстоятельства дела, клиническая картина, история болезни, акт судебно-медицинского исследования трупа и т. д.

И действительно, исходя из природы химических веществ и учитывая возможности химических методов, нетрудно предста­вить, что отрицательный результат судебно-химического иссле­дования биологических объектов не всегда будет свидетельство­вать об отсутствии в объекте исследования ядовитых веществ. При помощи судебно-химического исследования в биологиче­ском материале обнаруживаются лишь следы остатков ядовито­го вещества, введенного в организм. Часть введенного вещества могла распределиться по всем органам, часть оказалась выве­денной из организма, например, с мочой, рвотой, экскрементами. Какое-то количество вещества могло быть разрушено, подверг­нуто превращениям или вступило во взаимодействие с различ­ными компонентами организма. Наконец, часть вещества может оказаться необнаруженной в связи с недостаточно чувствитель­ными реакциями, применяемыми при том или ином методе ис­следования. Многие вещества до настоящего времени еще и не обнаруживаются химическими методами, например, бактерийные токсины и ряд других органических химических соединений.

Даже если анализ показал присутствие какого-либо ядовитого вещества, это не всегда может служить доказательством введе­ния его в организм с целью отравления, так как вещество могло попасть в организм и не в качестве яда, а в виде лекарства (мышьяк, морфин, стрихнин и др.), могло быть внесено в объект исследования (например, мышьяк из земли кладбища при иссле­довании органов эксгумированного трупа). Наконец, при исполь­зовании особенно чувствительных методов судебно-химическим исследованием могут быть обнаружены вещества, являющиеся продуктами белкового распада или находящиеся в объек­те исследования в качестве естественно содержащихся элементов (цинк, марганец и др.). В силу всего этого производство химико-токсикологических и особенно судебно-химических исследова­ний, главным образом биологического материала, требует серь­езной теоретической и практической подготовки специалиста в области токсикологической (судебной) химии, с одной стороны, и знания границ этого вида исследований врачами, органами дознания, следствия и суда - с другой.

 

2.2. План исследования

 

План судебнохимического исследования, прежде всего, вытекает из тех вопросов, какие ставят химику-эксперту соответствующие органы, препровождая объект. Эти вопросы определяют чем будет данное исследование: 1) открытием ядовитых и вредных веществ при различного рода отравлениях: криминальных, санитарных, профессиональных, для нахождения причины смерти или повреждения здоровья, а также для предупреждения возможности их (токсикологический анализ); 2) открытием фальсификации, подделки тех или других предметов и пр.; 3) определением подлинности тех или других объектов: врачебных средств, косметических товаров, чернил и пр.

 

2.2.1. Токсикологический анализ

 

Химико-токсикологический анализ является наиболее частой, столь обычной работой судебного химика, что судебную химию часто отождествляют с открытием ядов, с химико-токсикологическим анализом. Объекты его отличаются своим разнообразием: части внутренних органов, рвотные массы, моча, остатки пищи и напитков с прибавленными ядами и сами эти ядовитые вещества, пищевые и вкусовые продукты, предметы домашнего обихода, земля, вода, воздух и пыль промышленных предприятий и их окрестностей.

       Твердые и жидкие объекты доставляются в соответствующих укупорках: банках, бутылках, коробках и пр. Для исследования воздуха химическое исследование переносится на территорию предприятий и пр. В некоторых случаях и здесь воздух собирается и доставляется в лабораторию в опечатанных, особо приспособленных баллонах с измеренным объемом. Далее проводят предварительные испытания.

 

2.2.2. Предварительные испытания

Приходится всегда иметь в виду, что предварительные испытания не решают вопроса, а только направляют его решение; поэтому необходимо с особенно большой осторожностью относиться к трате на них объектов, беря на все испытания, например, не более 1/20 части каждого объекта, и, где это возможно, весьма желательно, чтобы испытания не сопровождались тратой объекта, а заключались лишь во временной утилизации его и даже только в наблюдении.

1. Прежде всего устанавливают характер объекта, его консистенцию, морфологический состав, например, при внутренних органах трупа отмечается, части каких органов в нем заключаются.

2. Устанавливают, консервированы ли объекты. Консервирование внутренних органов трупов при пересылках на достаточно большие расстояния часто производятся винным спиртом. Это важно установить потому, что некоторые дальнейшие манипуляции, например, разрушение органических веществ хлором, потребуют удаления спирта.

В протоколах вскрытия и других препроводительных документах консервирование обыкновенно отмечается, но иногда это и упускается. В случаях консервирования объектов винным спиртом при объекте должен быть доставлен образец этого спирта для производства судебнохимического исследования.

Были недопустимые по существу дела попытки консервировать формалином, уничтожающим многие яды, как, например, аммиак, синильную кислоту и пр., затрудняющим открытие метилового спирта и, наконец, могущим быть ядом.

3. Определяют запах объекта. Часто он дает руководящие указания, например, горькоминдальный запах при синильной кислоте и простой цианистой соли вследствие гидролиза, нитробензоле, бензойном альдегиде; запах винного спирта, особенно денатурированного (пиридиновых оснований), сивушного масла, карболовой кислоты, дихлорэтана и пр. Резкий запах нитробензола обыкновенно и дает повод к его отысканию. Понятно, что пахучие продукты гниения часто маскируют первоначальный запах. Иногда прибавление нескольких капель раствора перманганата калия уничтожает запах продуктов гниения.

4. Цвет объекта дает обыкновенно ценные указания. При внутренних органах трупа, рвотных массах, пище и пр. является весьма важным установить, равномерно ли окрашен весь объект или окрашены только некоторые места; не исходит ли окрашивание от отдельных частиц, кристаллов и пр. Желтое окрашивание характерно для пикриновой кислоты, акрихина (окраска белковых тел), для азотной кислоты (ксантопротеиновая реакция на белок), хроматов и различных каменноугольных красок. Зеленое, синее или фиолетовое окрашивание наблюдается при солях меди, каменноугольных красках и пр. Черное окрашивание (обугливание) характерно для содержимого желудка при отравлениях концентрированной серной кислотой и для тканей при облитии их ею. Характерны изменения в цвете от кислот на окрашенных тканях одежды и пр., которые часто бывают объектом исследования при преступных попытках к вредительству.

Из многочисленных примеров того как окраска дает соответствующие указания, можно привести один случай, когда нахождение во внутренних органах трупа ртути при окраске в фиолетовый цвет пищеварительных путей (далее был установлен характер краски) дало ясную картину, что найденная ртуть была введена в виде медицинского раствора сулемы, окрашенного, как это требуется законом, каменноугольной краской. В другом случае изумрудно-зеленая окраска содержимого желудка коров (швейнфуртская зелень) дала повод к исследованию объектов на мышьяк.

5. Реакция исследуемых жидкостей, желудочного содержимого и пр. на лакмус и другие индикаторы дает иногда ясные указания.

При неводной жидкости несколько капель ее тщательно взбалтывают с небольшим количеством дистиллированной воды (нейтральной реакции на лакмус) и водный раствор испытывают индикаторами. При этом необходимо иметь в виду, что обыкновенные пробирки и другая химическая посуда при взбалтывании с водой часто отдают ей следы щелочей, сообщая щелочную реакцию. Поэтому должно быть предварительно испытано стекло пробирок, делительных воронок и пр. Желательно употребление в этих случаях пробирок и другой посуды твердого стекла, не отдающих воде щелочи даже при кипячении.

Реакции лучше всего проводить в фарфоровых чашечках, в которые положены реактивные бумажки: в одну помещаются капли испытуемой жидкости, в другую – дистиллированная вода; спустя некоторое время сравнивают окраску бумажек.

При густой жидкости, какой бывает иногда желудочное содержимое, предварительно каплю ее смешивают в фарфоровой чашечке, на крышечке от тигля и т.д. с одной-двумя каплями дистиллированной воды – нейтральной реакции на лакмус.

Кислая реакция объекта на лакмус может обусловливаться наличием свободных кислот, кислых солей сильных кислот и солей тяжелых металлов.

Кислая реакция желудочного содержимого уже исключает возможность открытия введенных в организм едких щелочей.

Ткани внутренних органов трупа, как и содержимое желудка, после смерти обыкновенно имеют кислую реакцию на лакмус, не вследствие первоначальной кислотности их (соляная кислота желудочного сока уже не открывается после смерти организма), а как результат кислотного брожения, вызываемого бактериями. Затем с переменой бактерийной флоры начинается щелочное брожение, развиваются аммиак и сероводород, содержимое желудка приобретает щелочную реакцию на лакмус. При этом часто успевают нейтрализоваться до исследования даже введенные внутрь кислоты, что делает невозможным их открытие.

При кислой реакции на лакмус жидкость испытывают на красное конго (бумажкой конго), тропеолин, диметиламиноазобензол и метилвиолет. В присутствии минеральных кислот при всех концентрациях их, а органических – при большой концентрации их, какая обычно не имеет места при естественном нахождении их в содержимом желудка, наступает посинение конго, покраснение тропеолина и диметиламиноазобензола и позеленение метилвиолета. Из сказанного следует, что положительный результат не является окончательным доказательством присутствия минеральных кислот, а лишь служит руководящим указанием.

Щелочная реакция на лакмус может обусловливаться наличием едких щелочей, карбонатов, а также растворимых силикатов. Для отличия едких щелочей от карбонатов (и растворимых силикатов) несколько капель испытуемой жидкости смешивают в пробирке из твердого стекла с 1-2 каплями алкогольного раствора фенолфталеина, затем взбалтывают с избытком хлорида бария: в случаях едких щелочей последний не уничтожает розовой или красной окраски фенолфталеина, что происходит при карбонатах щелочных металлов. Реакция чувствительнее при испытании на лакмус, что важно для открытия следов едкой щелочи в карбонатах, как, например, при превращении едкой щелочи в углекислую при долгом соприкосновении с угольным ангидридом воздуха. Для этого несколько капель испытуемой жидкости смешивают в фарфоровой чашечке с избытком хлорида бария, нагревают и каплю отстоявшегося прозрачного раствора смешивают с каплей раствора хлорида бария (для проверки). При отсутствии помутнения помещают в жидкость лакмусовую бумажку и спустя некоторое время сравнивают с лакмусовой бумажкой, помещенной одновременно в дистиллированную воду. В случае гидрата аммония (аммиака) красная лакмусовая бумажка, посиневшая в смеси испытуемой жидкости с избытком хлорида бария, принимает на воздухе первоначальный цвет.

6. Твердые тела, порошки, осадки в жидкостях тщательно осматривают сначала макроскопически, затем при помощи лупы и, наконец, микроскопа (обыкновенно с малыми увеличениями – в 60-100 раз).

Неоднократно наблюдались случаи, когда на твердых телах: лепешках, печенье и пр., находились призматические кристаллы нитрата стрихнина, фарфоровидные крупинки белого мышьяка или мышьяковистого ангидрида, зеленые частицы надкрылий шпанских мух и т.д., могущие служить для дальнейших испытаний в качестве вещественного доказательства.

При исследовании желудка последний вместе с содержимым растягивают по большой свежевымытой фарфоровой чашке и при помощи лупы производят подробный осмотр всей внутренней поверхности желудка и его содержимого. При помощи чистого пинцета отбирают кристаллы и другие подозрительные частицы, например, частицы, напоминающие крупинки мышьяковистого ангидрида, остатки растений, листьев, семян, грибов и пр., которые затем подвергают химическому или ботанико-фармакогностическому исследованию.

Иногда содержимое желудка смывают в конический бокал, отстаивают или в соответствующей пробирке подвергают центрифугированию, затем пипеткой берут осадок и исследуют его макро- и микроскопически.

При анализе порошков после обыкновенного микроскопического исследования иногда часть их смешивают с хлороформом, отстаивают в коническом бокале и исследуют отдельно макро- и микроскопически тяжелый осадок (соли ядовитых металлов) и легкую, плавающую на поверхности часть, большей частью растительные остатки.

7. Найденные на твердых телах, на стенках желудка и пр. фарфоровидные крупинки, напоминающие белый мышьяк, подвергают предварительному испытанию: крупинку помещают в тугоплавкую тоненькую, оттянутую с одного конца и запаянную трубочку. Над крупинкой плотно помещают кусочек угля и осторожно накаливают сначала уголь, а затем и исследуемую крупинку, вращая трубочку. При белом мышьяке в холодной части трубочки образуется серо-черное блестящее кольцо металлического мышьяка. Запаянный конец отрезают, уголь удаляют и трубочку осторожно нагревают, начиная с отрезанного конца. При этом кольцо перегоняется к свободному концу трубочки, давая белый налет мышьяковистого ангидрида, образующегося вследствие окисления. Налет рассматривают под микроскопом с малым увеличением: видны блестящие микроскопические октаэдры, характерные для As2O3:

1) As2O3 + 3 C → As2 + 3 CO,

2)2 As2 + 3 O2 → 2 As2O3.

  8. При предварительных испытаниях на желтый фосфор часть желудка с его содержимым помещают в эрленмейеровскую колбочку, закрытую пробкой с узким прорезом. К нижней поверхности пробки прикрепляют две полоски фильтровальной бумаги, из которых одна смочена раствора нитрата серебра, а другая раствором ацетата свинца. Колбу помещают на слабо нагретую водяную баню (около 400С) и оставляют на 24 часа (проба Шерера). Побурение одной «серебряной» бумажки указывает на присутствие желтого фосфора. При заметном присутствии его может ощущаться запах озона, образующегося вследствие окисления желтого фосфора кислородом воздуха.

    Побурение обеих бумажек может быть при наличии фосфора и сероводорода, а также при одном последнем, находящемся часто в объектах вследствие гниения. Далее почернение одной «серебряной» бумажки может обусловливаться и другими летучими веществами, обладающими восстановительной способностью, например, формальдегидом или полуторосернистым фосфором (P2S5), который менее ядовит, чем фосфор. Следовательно, эта предварительная проба может доказать только отсутствие фосфора (когда обе бумажки остаются неокрашенными), или, как говорят судебные химики, имеет отрицательное значение. Почернение «серебряной» бумажки вызывается образованием Ag и Ag2P3 (коричневого цвета фосфид серебра).

P4 + 6 HOH → 3 H3PO2 + PH3 ,

H3PO2 + 2 H2O + 4 AgNO3 → 4 HNO3 + H3PO4 + 4 Ag ,

PH3 + 3 AgNO3→ 3 HNO3 + Ag3P.

9. Для предварительного испытания на синильную кислоту часть исследуемого материала помещают в эрленмейеровскую колбочку, слабо подкисляют виннокаменной кислотой; отверстие ее закрывают пробкой, к нижней поверхности которой прикреплена бумажка Шенбейна. Последняя приготовляется смачиванием фильтровальной бумаги свежеприготовленной алкогольной настойкой гваяковой смолы (1:10). Бумагу высушивают, а перед употреблением снова смачивают разведенным раствором сульфата меди CuSO4 (1:2000). В случае если при стоянии бумажка Шенбейна от паров объекта не меняется в цвете, синильная кислота отсутствует. Синее или синеватое окрашивание может быть при синильной кислоте (чувствительность до 0,004 мг в 1 л), окисляющих веществах и аммиаке (образование CuSO4 * 5 NH3).

Сущность реакции при HCN состоит в образовании активного кислорода:

CuSO4 + 2 HCN → Cu(CN)2 + H2 SO4 ,

Cu(CN)2 → CuCN + CN,

2 CN + 2 HOH → 2 HCN + H2O + О.

Образование активного кислорода из озона возможно и вследствие других причин, например, вследствие окисления скипидара или других эфирных масел. Поэтому реакция Шенбейна имеет безусловное значение только при отрицательном результате, указывая на отсутствие синильной кислоты.

Пробе Шенбейна аналогична проба с фенолфталеином (восстановленным фенолфталеином), основанная на обратном окислении его в присутствии щелочи в фенолфталеин. Обладая большой чувствительностью (1:500 000), она также может служить доказательством отсутствия синильной кислоты.

Для приготовления фенолфталеина щелочной разведенный раствор фенолфталеина нагревают с цинковой пылью до обесцвечивания. Полученным раствором смачивают полоски фильтровальной бумаги, высушивают и снова смачивают разведенным раствором медного купороса.

При окислении бумажка принимает ярко-красный цвет.

Подобной же реакцией является реакция с бензидином и солью меди (бумажка смачивается раствором солей бензидина и меди).

10. Хорошей предварительной пробой при свежем трупном материале является микрокристаллическая реакция на HCN, основанная на образовании AgCN. Кусочки исследуемых органов, мочу или кровь помещают в маленькую (25-30 мл) колбочку. Объект подкисляют щавелевой кислотой, а колбу быстро закрывают предметным стеклом, на нижнюю поверхность которого нанесена капля 1% раствора AgNO3 , подкрашенного метиленовой синькой (можно и не подкрашивать). Через 2-3 часа при микроскопическом исследовании наблюдаются спутанные, разной величины, тончайшие иглы AgCN, синие при подкрашивании метиленовой синькой и бесцветные без нее.

11. Калиевые и натриевые соли железистосинеродистой (H4FeCy6) кислот (желтая и красная кровяные соли), не разлагаясь в организме, для него, видимо, не ядовиты, но при перегонке с разведенными кислотами (даже с виннокаменной) дают синильную кислоту и тем могут ввести в заблуждение судебного химика. Для испытания на желтую К4Fe(CN) 6 и красную кровяные соли К3Fe(CN)6 несколько капель желудочного содержимого размазывают по фарфоровой чашке, подкисляют и испытывают хлорным железом (FeСl3), а затем сернокислой закисью железа (FeSO4). Посинение от хлорного железа (образование берлинской лазури) укажет на присутствие желтой кровяной соли, посинение от FeSO4 (образование турнбулевой сини) – на присутствие красной кровяной соли.

12. Свободный йод при отравлениях им обыкновенно быстро поглощается белками и щелочами и уже не открывается как таковой. Более надежным бывает открытие свободного йода в свежих рвотных извержениях, которые иногда окрашены в синий цвет вследствие присутствия в желудке крахмалистых веществ. Для испытания в случае надобности на свободный йод рвотные массы или желудочное содержимое размазываются по фарфоровой чашке и смачиваются крахмальным клейстером, дающим с йодом синее окрашивание.

13. Для испытания на аммиак часть желудочного содержимого или рвотных масс (при щелочной реакции их, наличии едкой щелочи) помещают в коническую колбочку; отверстие колбочки закрывают пробкой, к нижней поверхности которой прикреплены красная лакмусовая бумажка и бумажка, смоченная ацетатом свинца. Посинение красной лакмусовой бумажки указывает на присутствие аммиака. Для проверки посиневшую бумажку оставляют на воздухе, причем первоначальный красный цвет восстанавливается вследствие разложения синей аммонийной соли лакмусовой кислоты с образованием свободной (красной) кислоты. Реакция имеет значение только при свежих внутренних органах трупов, где нет щелочного брожения, дающего аммиак и сероводород. Поэтому при наличии только аммиака, поступившего в организм извне, а не образовавшегося вследствие гниения (брожения) <



2020-02-03 260 Обсуждений (0)
ИЗОЛИРОВАНИЕ ПОДКИСЛЕННЫМ СПИРТОМ 0.00 из 5.00 0 оценок









Обсуждение в статье: ИЗОЛИРОВАНИЕ ПОДКИСЛЕННЫМ СПИРТОМ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (260)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)