Мегаобучалка Главная | О нас | Обратная связь


Силовой расчет диады 4-5



2020-02-04 167 Обсуждений (0)
Силовой расчет диады 4-5 0.00 из 5.00 0 оценок




 

Изобразим диаду 4-5 в прежнем масштабе длин.

Покажем все силы, действующие на диаду, в точках их приложения:

- силу давления газов на поршень ;

- силы тяжести  и ;

- силу реакции , действующую со стороны стойки 6 на поршень 5, направленную перпендикулярно АЕ;

- силу реакции в кинематической паре. В точке D неизвестную реакцию , действующую со стороны кривошипа 1 на шатун 4, разложим на две составляющие – нормальную , направленную вдоль шатуна DE, и касательную , перпендикулярную DE.

Приложим силы инерции:

- главные векторы сил инерции  и , направленные противоположно ускорениям  и ;

- главный момент сил инерции , направленный противоположно угловому ускорению ε4.

Неизвестные: ; ; .

Найдем касательную составляющую , для чего составим 1 уравнение – уравнение суммы моментов всех сил, действующих на диаду 4-5, относительно точки Е:

,

отсюда:

Найдем нормальную составляющую  и реакцию  со стороны стойки.

Уравнение суммы векторов сил для диады 4-5:

В этом уравнении неизвестны величины сил  и . Строим векторный многоугольник сил.

Выберем масштаб построения векторного многоугольника сил. Пусть масштаб построения многоугольника сил останется прежним:

μF = 153,3 Н/мм

Отрезки векторного многоугольника, соответствующие различным известным силам, будут равны:

ab = Fτ14F = 1474/153,3 = 9,6 мм

cd = ФS4F = 7515/153,3 = 49 мм

ef = ФS5F = 5040/153,3 = 32,9 мм

bc = G4F = 150/153,3 = 0,98 мм

de = G5F = 120/153,3 = 0,8 мм

fg = Рд5F = 18,5/153,3 = 0,1 мм

Построим векторный многоугольник сил для диады 4-5:

Из точки а откладываем отрезок ab в направлении силы . От точки b откладываем отрезок bс в направлении силы тяжести . Практически он вырождается в точку. От точки с откладываем отрезок сd в направлении силы . От точки d откладываем отрезок dе в направлении силы тяжести . Практически он вырождается в точку. От точки е откладываем отрезок еf в направлении силы . Отрезок fg практически вырождается в точку. Из точки g проводим прямую, перпендикулярную направляющей стойки – направление . Из точки а проводим прямую, параллельную DE – направление  до пересечения с предыдущей прямой в точке к. В точке пересечения к векторный многоугольник замкнется.

Находим направление неизвестных сил, для чего расставляем стрелки векторов ,  так, чтобы все силы следовали одна за другой, т.е. многоугольник векторов сил замкнулся.

Находим модули неизвестных сил:

Находим полную реакцию в шарнире D.

,

поэтому соединим точку к с точкой b. Отрезок кb соответствует полной реакции . Вычисляем:

Найдем реакцию внутренней кинематической пары.

 в точке E.

Разделим диаду по внутренней кинематической паре по шарниру E. Реакцию в точке Е представим в виде двух составляющих:

Схема нагружения звена 5. В точке Е согласно закону равенства действия и противодействия имеем реакции:

;

.

Составим уравнение суммы всех сил, действующих на звено 4:

Из уравнения следует, что для определения реакции  необходимо на многоугольнике сил соединить точку е с точкой к и направить вектор  в точку к.

Найдем модуль силы :

Сила , действующая на поршень, равна по величине  и направлена ей противоположно.

 

2.6 Силовой расчет механизма 1ого класса

 

Изобразим кривошип в том же масштабе длин.

Покажем силы, действующие на кривошип.

При установившемся режиме работы на кривошип в нашем примере действуют следующие силы:

 - сила со стороны шатуна 2, направленная противоположно силе , найденной при расчете диады 2-3.

 - сила со стороны шатуна 4, направленная противоположно силе , найденной при расчете диады 4-5.

 - сила со стороны стойки. Неизвестная ни по величине, ни по направлению. Покажем ее произвольно.

Сила веса маховика: .

Уравновешивающий момент: .

Момент сил инерции:

Запишем уравнение моментов для звена 1 относительно точки А:

,

где h1 и h1’ – плечи сил с кинематической схемы первичного механизма. Получаем:

Подсчитываем погрешность определения  двумя способами – из уравнения движения механизма и с помощью планов сил:

Погрешность расчетов не превышает 10%, что находится в допустимых пределах.

Составим уравнение векторной суммы сил:

Неизвестная сила  находится путем построения силового многоугольника.

Векторный многоугольник строим в масштабе сил µF = 153,3 Н/мм.

Отрезки векторного многоугольника будут равны:

ab = F21F = 9275/153,3 = 60,5 мм

bc = F41F = 12724/153,3 = 83 мм

cd = GMF = 2670/153,3 = 17,4 мм

Строим векторный многоугольник сил.

От точки а откладываем отрезок ab в направлении силы . Из точки b откладываем отрезок bc в направлении силы . Из точки с откладываем отрезок cd в направлении силы . Отрезок, соответствующий неизвестной силе , согласно векторному уравнению должен из точки d придти в точку а. Расставляем стрелки векторов сил.

Замыкающий вектор dа определяет искомую силу .

Найдем модуль силы :

 



2020-02-04 167 Обсуждений (0)
Силовой расчет диады 4-5 0.00 из 5.00 0 оценок









Обсуждение в статье: Силовой расчет диады 4-5

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (167)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)