Мегаобучалка Главная | О нас | Обратная связь


РАБОТА МЫШЦ В БЕГЕ ПО ДИСТАНЦИИ



2020-02-04 225 Обсуждений (0)
РАБОТА МЫШЦ В БЕГЕ ПО ДИСТАНЦИИ 0.00 из 5.00 0 оценок




Как известно, напряжение мышц вызывает движение пчмснтов тела, причем не всегда при этом в процессе движения длина мышцы уменьшается. Обычно напряже­ние мышцы приводит к тому, что угол в перекрытом ею с уставе уменьшается и она укорачивается. В таком случаи говорят о концентрическом напряжении. При различ­ных движениях мышцам приходится амортизировать приземление или тормозить двигающуюся с большой скоростью  конечность, в результате чего напряженная мышца под действием внешних сил растягивается, такой режим называется эксцентрическим напряжением. Быстрые движения довольно часто требуют такой роботы мышц, при которой сустав зафиксирован. Мышцы антагонисты, окружающие сустав с противоположных с юрон, одновременно напрягаются и, взаимно уравнове­шивая силу, «запирают» сустав, образуя жесткую систе­му. Такое напряжение мышц называется изометрическим.

Следовательно, в процессе выполнения двигательного и к га мышца может быть расслаблена или находиться в идиом из трех состояний напряжения. Поэтому при изу­чении внутреннего механизма движения необходимо яипть характер напряжения отдельных мышечных групп, количество одновременно работающих двигательных единиц в мышце, что определяет силу сокращения, а таже длительность их напряжения.

Чтобы учесть все возможные параметры работы мышечных групп и выявить систему их взаимо­действия в процессе даже самого простого движения •нмюпска, необходимы расчеты, которые пока еще трудно иыиолнить современной вычислительной машине. Ско­рость мышечного сокращения настолько велика, а его характер так разнообразен, что самому спортсмену полностью невозможно контролировать свои действия и максимально быстрых движениях, а тем более описать их. Если попросить спринтера рассказать о посяедова-тельности своих действий и характере чередования уси­лий при выполнении бегового шага, вряд ли он сможет даже приблизительно сделать это. В одном английском стихотворении иносказательно так говорится об этом:

Сороконожка была вполне счастлива,

Пока жаба ради шутки Не сказала ей: «Догадайся, какая ногаИдет у тебя после какой?» Разум сороконожки был ввергнутВ такую бездну раздумья, Что она обезумела и, лежа в канаве,Размышляла о том, как бегать.

Действительно, для сороконожки, у которой, как опре­делили зоологи, 260 ног, эта задача оказалась непосиль­ной, однако и система организации движений человека, несмотря на столетнюю историю изучения, все еще не раскрыта до конца.

Как показали исследования Н. А. Бернштейна, любое двигательное действие реализуется многоуровневой си­стемой управления. Медленные произвольные движения выполняются с участием высших слоев нервной системы под контролем органов чувств. В этом случае движение корректируется на основе обратной афферентации. Ходь­ба и бег относятся к разряду так называемых автомати­зированных движений, которые осуществляются -'на осно­вании заранее сформированной программы и, как пра­вило, проходят без контроля со стороны больших полу­шарий коры головного мозга, т. е. бессознательно.

В процессе развития человеческого организма с пер­вых самостоятельных шагов такая программа начинает постепенно формироваться. Делая медленный шаг, ребе­нок постоянно контролирует каждый его элемент. В ран нем возрасте свои движения дети складывают как кубн ки, подбирая самые подходящие из них или заменяя одно на другое.

Замечательная способность человека на первых порах своей жизни столь внимательно анализировать свои дей ствия и быстро изменять их составные части, перестраи вая двигательную структуру, широко используется и практике различных видов спорта, где особенно важно проявлять способность к высокой координации движений. Именно поэтому больших успехов добиваются юные гимнасты и акробаты, фигуристы и прыгуны в воду.

Автоматизированные движения начинают формироваться у человека к пятому, шестому году жизни.Каждый элемент движения в отдельности уже  освоен, однако система еще не сложилась. Каж­дым шаг отличается один от другого различной внут­ренней ритмической структурой. Лишь значительно поз­же формируется двигательная программа, которая может выполняться без контроля сознания, и управление ткни движением переходит к более низким уровням мозга (мозжечку, подкорковым узлам, стволу мозга и мотонейронам спинного мозга). Поскольку в беге ( в беге с высокой скоростью) сознание не контроли­рует отдельные движения рук и ног, очень важно разобраться во внутренней структуре бегового шага, т. е. последовательности и характере действий отдельных мы­шечных групп ног, с тем, чтобы в процессе тренировок

•использовать целенаправленную программу технической подготовки и применять специальные упражнения, соответствующие режимам работы мышц в беге с макси­мальной скоростью.

1. Наружная группа мышц таза (основные — ягодич­ные большая, средняя и малая) выпрямляет согнутое вперед туловище, отводит и разгибает бедро.

2. Передняя группа мышц бедра (основные — порт­няжная и четырехглавая бедра, в которую входит пря­мая мышца бедра, широкие — внутренняя, латеральная и промежуточная). Некоторые мышцы группы перекры­вают два сустава — тазобедренный и коленный, прини­мают участие в сгибании бедра и разгибании голени.

3. Задняя группа мышц бедра (основные — полусухо­жильная, полуперепончатая и двуглавая) разгибает бедро и сгибает голень.

4. Передняя группа мышц голени (основные — перед­няя большеберцовая, длинный разгибатель пальцев, длинный разгибатель большого пальца) разгибает стопу, поднимая ее вверх.

5. Задняя группа мышц голени (основные — трех­главая голени, состоящая из двух головок икроножной и лежащей под ними камбаловидной мышцы) сгибает голень в коленном суставе и стопу.

Анализировать режим работы мышечных групп при выполнении спортивных упражнений — задача доста­точно трудная. Во-первых, необходимо зафиксировать мышечную активность, т. е. временные и силовые харак теристики мышечного возбуждения, во-вторых, связать эти данные с внешними характеристиками движения. Изучение спринтерского бега в этом отношении выдвигает целый ряд дополнительных трудностей, связанных с быстрым передвижением спортсмена по дорожке. Пред­принятые ранее исследования по изучению бега с невы­сокой скоростью не давали возможности выявить законо­мерности мышечного сокращения в спринте. В беге на средние и длинные дистанции значительная длительность фаз опоры и полета дает возможность мышцам развить почти максимальное усилие и расслабиться, позволяя мышце-антагонисту выполнять такую же задачу. В сприн терском же беге надо проявить максимально возможную силу в кратчайшие сроки, поэтому мышцы иногда работают в ущерб наиболее рациональному действию.

В исследованиях доктора биологических наук И. М. Козлова раскрываются некоторые основные внутренние механизмы, обеспечивающие бег с высокой ско ростью. Автор изучал электрическую активность семи основных мышц ног и сопоставлял ее с синхронной записью движений бегуна. Анализ кинограммы, на кото­рой циклы бегового шага разделены на периоды опоры (с фазами амортизации и отталкивания) и переноса ноги (с фазами разгона ноги и торможения), и электромиограм-мы работающих мышц позволила понять сложную иерар­хию деятельности мышц и переосмыслить некоторые уста­новки, связанные с применением беговых упражнений. Прежде всего необходимо отметить полученные данные по временным показателям активности исследуемых мы­шечных групп. Хорошо известно, что спринт характерен достаточно стабильными для различных спортсменов временными параметрами бегового шага.

У мужчин в беге со скоростью 11 м/с время опоры составляет 90 мс, а полета — 115 мс, у женщин — 110 мс и 125 мс. Обычно колебания значений этих параметров находятся в пределах 2—3%, однако если рассматри­вать длительность напряжения отдельных мышечных групп у отдельных спринтеров, то диапазон этих колеба­ний значительно расширяется и составляет 5—22% (!). Таким образом, примерно одинаковые во внешнем прояв­лении движения спортсмена обеспечиваются у различных людей совершенно по-разному. Иначе говоря, у каждого спринтера свой способ достижения цели, и, по-видимому, насколько он более рационален — настолько экономич­нее техника бега. Очевидно, именно здесь проявляется предрасположенность спортсменов к длинному или корот­кому спринту.

Во время бега с высокой скоростью мышцы ног рабо­тают в диапазоне 30—80% от всего двигательного цикла. При этом движение осуществляется по так называемому баллистическому типу, когда, резко повышая актив­ность, мышца разгоняет отдельные звенья тела на корот­ком отрезке пути, после чего движение осуществляется по инерции. Такие баллистические движения характерны для всех высокоавтоматизированных быстрых действий, требующих высокой точности.

Наибольшая активность всех мышечных групп ноги наблюдается в момент подготовки к постановке стопы на грунт в первую фазу периода опоры. Мощное напря­жение мышц, вызывающее разгибание бедра и сгибание голени, позволяет развить необходимую «посадочную» скорость стопы, а напряжение соответствующих мышц-анта­гонистов «закрепляет» все суставы опорной ноги и обес­печивает

достаточно жесткое приземление, сохраняющее высокую траекторию общего центра тяжести. В фазе амортизации основную нагрузку несут мышцы голени — икроножная и камбаловидная, при этом угол в голено­стопном суставе изменяется на 34—38°. Под влиянием отягощения массы тела напряженные мышцы голени, растягиваясь, поглощают энергию, с тем чтобы во второй фазе использовать ее при отталкивании. Перемещения звеньев ноги в коленном суставе в период опоры дости­гает лишь 4—10°, поэтому нагрузка на прямую мышцу бедра в эксцентрическом режиме в фазе амортизации относительно меньше. Установлено, что у спринтеров в периоде опоры мышцы голеностопного сустава выпол­няют работу в 6 раз большую, чем мышцы коленного сустава. Постоянная работа в экстремальных условиях приводит к значительному приросту максимальных сило­вых возможностей мышц голени. Поэтому по жесткости икроножных мышц (показатель, который имеет почти линейную зависимость с проявляемой силой) сильнейшие спринтеры значительно превосходят представителей всех других спортивных дисциплин .

Приведенные данные последовательности работы мы­шечных групп и их режимов деятельности в процессе выполнения опорного периода бегового шага позволяют более избирательно подойти к выбору специальных скоростно-силовых упражнений, применяемых в трени­ровке спринтеров. Как известно из теории спортивной тренировки, подбор специальных средств основывается на принципе динамического соответствия применяемого упражнения соревновательному. Электромиографические исследования характеристик мышечной активности в спринтерском беге показали, что процесс амортизации в опорном периоде и подготовка к нему являются важ­нейшими, если не самымии главными, элементами бегового шага, так как величина усилий и очень сложная коорди-нированность деятельности всех мышечных групп ноги достигает в этот период наивысших значений. Однако в практике подготовки бегунов на короткие дистанции часто не учитывают этот фактор. Как правило, для раз­вития скоростно-силовых возможностей мышц голени используют различные выпрыгивания, подскоки, подъемы на носки с отягощением и прочие аналогичные упражнения,. в которых "слабо • акцентируется элемент аморти­зации. Многоскоки, которые широко -представлены в скоростно-силовой подготовке бегунов, также отличны по своим двигательным параметрам от характеристик быст­рого бега, так как в этом случае постановка ноги на грунт осуществляется на плоскую стопу и основная нагрузка в фазе амортизации падает на мышцы бедра. Таким образом, вероятно, более подходящими: упраж­нениями для спринтера должны быть: «бег на одной ноге» с акцентом приземления на переднюю часть стопы, многоскоки в быстром темпе, а также: в гору с обязатель­ным условием не касаться пяткой поверхности дорожки. Можно рекомендовать спрыгивания с возвышения 70— 80-см, амортизируя приземление мышцами голени, с последующим выпрыгиванием вперед или вверх. Автор применял кроссовые пробежки до 4—5 км только на переднем своде стопы. В таких случаях в целях контроля на пяточную  часть подошвы кроссовок можно наклеи­вать пластырь: его чистота в конце пробежки -~ свиде­тельство добросовестного выполнения задания.

В фазе отталкивания опорного периода  в основном хорошо работают «заряженные» мышцы го­лени, в то время как мышцы, разгибающие колено, работают в меньшей степени. Эти данные: опровергают бытовавшее ранее мнение об эффективности до отталкивания и о том, что хорошая техника бега прежде всего характерна полностью выпрямленной в коленном суставе ногой в момент отрыва стопы от дорожки.

Исследования техники спринтерского бега показы­вают, что увеличения скорости спортсмены высокой ква­лификации достигают в основном за счет повышения частоты шагов, которая прежде всего зависит от силы и согласованности действий мышц, перекрывающих тазо­бедренный сустав. Разгон маховой ноги начинается пе­редней группой мышц бедра чуть раньше момента, когда опорная нога касается поверхности Дорожки. В фазе разгона и торможения маховой ноги активно участвуют передние и задние группы мышц бедра, рабо­тающие как в период опоры, так и особенно в период переноса, и практически не бывающие в состоянии пол­ного расслабления. Определено, что активный период прямой- мышцы бедра составляет 80% всего двигатель­ного цикла, а двуглавой — 75%.

Таким образом, представление о том, что техника спринта представляет собой строго последовательную работу мышц-антагонистов, не соответствует реальному протеканию процессов напряжения и расслабления мышечных групп в этом виде бега. Если в момент подго­товки к приземлению и в период опоры мышцы-антаго­нисты как бы «запирают» суставы, обеспечивая жест­кость ноги, то одновременное напряжение мышц-анта­гонистов бедра в момент маха несет несколько иную функцию.

Если обратиться к обычному маятнику, который рас­сматривают в физике, то он характеризуется так назы­ваемой частотой свободных колебаний, зависящих -От его длины и распределения масс вдоль маятника. Чем ближе расположен центр масс к оси вращения, тем выше час­тота свободных колебаний. Поэтому для большей часто­ты колебаний маятника целесообразнее приблизить центр тяжести к оси вращения. Именно так поступают, регу­лируя маятник.часов: поднимая вверх регулировочный вес — увеличивают частоту колебаний, снижая — замед­ляют.

В природе этот, физический закон хорошо иллюстри­руют животные, умеющие хорошо бегать. Основная мы­шечная масса ног животных приближена к суставам, вокруг оси которых выполняются маховые движения. Среди крупных животных наибольшую частоту движе­ний в беге развивают свиньи, строение ног которых — классическое подтверждение упомянутого факта.

Как известно, в результате маховых движений, выполняемых в момент опоры, происходят перемещения и ускорения общего центра тяжести масс в такой же степе­ни, что и при активном отталкивании. Мерой эффектив­ности махового движения, которое характеризуется ско­ростью перемещения звена и расположением его массы относительно оси вращения, является кинетический мо­мент или количество вращательного движения. Если рассматривать ногу как колеблющийся маятник, то ее сгибание в коленном суставе позволяет значительно изменять момент инерции, который зависит от квадрата расстояния центра массы до оси вращения. При выполнении максимально быстрых движений имеет смысл «укорачивать маятник», так как в этом случае нас преж­де всего интересует время перемещения конечности (рис. 3, а, б). •

Существует еще одна возможность увеличить частоту колебания маятника. Для этого необходимо связать маятник упругими связями.

При быстрых пере­движениях маховой ноги роль таких упругих свя­зей последовательно вы­полняют мышцы-антаго­нисты, сгибающие и раз­гибающие бедро. Они на­ходятся почти в постоян­ном напряжении, причем максимумы активности мышечных групп диамет­рально противоположны. Благодаря этому обеспе­чивается разгон в том

или ином направлении. Работа мышцы-антагониста в эксцентрическом режиме позволяет накапливать энер­гию, используя упругие свойства мышц. Такой режим работы, называемый реверсивным, позволяет быстро ме­нять направление движений, увеличивая их частоту. Изменение темпа движений энергетически стоит очень дорого и при быстром беге пропорционально третьей степени скорости перемещения маховых конечностей. Это значит, что увеличение скорости всего на 10% требует увеличения энергии на одну треть, а двукратное уве­личение скорости требовало бы ее возрастания в 8 раз. В общей энергетике спринта расходы, затрачиваемые на «болтание» ногами, существенно превосходят другие энергетические компоненты, примерное соотношение ко­торых в спринтерском беге таково: работа против силы тяжести — 3%, против сопротивления воздуха — 18%, работа, направленная на разгон конечностей — 57% и на их торможение — 22%.

Приведенные данные позволяют с некоторой долей критики рассмотреть сложившуюся систему скоростно-силовой подготовки бегунов на короткие дистанции. Ра­бота против силы тяжести — это перемещение в каждом таге общего центра массы тела на высоту 4—6 см. Такая задача может быть решена каждым начинающим спортсменом. Однако отталкивание, очевидно, решает далеко не все проблемы спринтерского бега. Ясно, что спринт — это не последовательно выполняемые прыжки в длину, результативность которых, как известно, зави­сит от силы толчка. Основные энергетические ресурсы в максимально быстром беге расходуются на разгон и торможение массивной маховой конечности. Если около 80% своих усилий спортсмены тратят именно на этот режим деятельности, то в спортивной тренировке доля упражнений, связанных с активными маховыми движе­ниями, должна быть существенно увеличена.

Как показали исследования техники бега спортсменов мирового класса, проведенные учеными из США П. Спра-гом и Р. Манном (1983), высшей скорости соответствуют максимальные значения характеристик маховых движе­ний — угловые скорости маха вперед и постановки ноги на грунт. При этом скорость стопы при махе вперед до­стигает 20 м/с и более, т. е. она в 2 раза больше скорости бега. При перемещении бедра вперед оно за 0,04—0,05 с приобретает ускорение 80,8—90 м/с2, через 0,02—0,03 с резко возрастает ускорение голени, достигая величины

120—140 м/с2.

При отделении стопы от опоры происходит сильный реактивный рывок назад с ускорение до 180 м/с2.

Фактические данные, свидетельствующие об огромных значениях ускорений в момент перемещения ноги, дают основание считать, что совершенствование координацион­ной структуры движений, связанное с наиболее эффек­тивной работой мышц-антагонистов, осуществляющих маховые движения, является наиболее перспективным направлением процесса развития скоростных возможно­стей бегунов на короткие дистанции. Важную роль при этом играет сбалансированность скоростно-силовых ха­рактеристик мышц, осуществляющих разнонаправленные действия. Рост силы мышечных групп человека происходит таким образом, что вследствие выполнения самых разнообразных бытовых движений — ходьбы, медленного бега, переноса тяжестей, подъема по лестнице и других, преимущественно нагружаются мышцы-разгибатели ног, которые в зрелом возрасте человека превосходят силу соответствующих мышц-сгибателей бедра и голени — в 3,8, стопы — в 6,2 раза. Тренировка в спринте, где зна­чительная нагрузка ложится на мышцы-сгибатели ног, приводит к выравниванию скоростно-силовых характе­ристик мышц-антагонисто'в. У спортсменов высокого класса эти соотношения достигают следующих величин: для мышц бедра — в 2,9, голени — в 2,5, стопы — в 5 раз. Учитывая эту тенденцию, можно достаточно уве­ренно говорить, что прогресс спортсмена в спринтерском беге зависит не только от максимальных значений силы мышц ног, но и от того, насколько они сбалансированы в мышцах-антагонистах.

Подтя.гивание скоростно-силового потенциала отстаю­щих мышечных групп спринтеров, видимо, не является достаточно серьезной проблемой, так как требует лишь увеличения доли силовых упражнений, направленных на развитие силы мышц-сгибателей ног. Более сложным вопросом представляется совершенствование координа­ции работы соответствующих мышечных групп. Для ре­шения этой задачи подбор упражнений должен быть обоснован режимом работы мышц-антагонистов в спринтерском беге. Например, применение различных маховых упражнений с использованием резиновых амор­тизаторов в данном случае является неоправданным, так как по мере растяжения амортизатора необходимо увеличивать напряжение соответствующих мышц, в то время как в быстром беге характер напряжения совер­шенно противоположный (баллистическое движение). Здесь предпочтительнее выполнять упражнения с отяго­щением на маховой ноге. Высокоэффективными силовыми упражнениями, соответствующими координационной структуре и способствующими совершенствованию ско­ростных возможностей бегунов на короткие дистанции, являются так называемые рывково-тормозные упражне­ния, такие, как имитация максимально быстрого бега с отягощением на ногах и без него при верхней опоре (кольца, брусья) или в стойке на лопатках; интересен и эффективен бег в воде.

Широко применяемые специальные беговые упражне­ния становятся более эффективными, если их выполнять

с соответствующими двигательными заданиями. Напри­мер, бег с высоким подниманием бедра в основном на­правлен на совершенствование силовых возможностей его сгибателей. При усложнении этого упражнения за­данием быстрее поднимать и опускатьбедро содержание упражнения в большей степени будет соответствовать характеристикам спринтерского бега. Особенно эффекти-нен бег с невысокими барьерами (40—50 см), при кото­ром скорость разгибания бедра при опускании ноги за барьер значительно превосходит эту скорость при беге на короткие дистанции. Поэтому можно говорить о том, что бег с низкими барьерами должен являться одним из основных упражнений спринтера.

 1.3РАБОТА МЫШЦ НА СТАРТЕ И СТАРТОВОМ РАЗГОНЕ

вестно, успех в спринтерском беге зависит от скорости бегуна на стартовом отрезке дистанции. При беге со старта основное значение приобретает мощность, которую способен развить спринтер на первых метрах бега. При этом резко возрастают требования к тем груп­пам мышц, которые обеспечивают эффективное продви­жение тела вперед.

Экспериментальные данные хорошо иллюстрируют мощную и постоянную работу мышц разгибателей ног. В стартовом разгоне (особенно в его начальной фазе) наибольшая амплитуда движения отмечается в тазо­бедренном суставе — до 70°, в то время как в коленном и голеностопном суставах примерно 45°. Следовательно, наибольшую нагрузку в беге со старта несут мышцы тазобедренного сустава. Мощное разгибание ног осуще­ствляется активизацией сильных ягодичных мышц, п также передней группой мышц бедра, разгибающих го­лень. Причем на эту группу мышц ног ложится основная нагрузка в стартовых действиях, так как после разгибания голени двусуставные мышцы передней поверхности бедра мгновенно переключаются на выполнение активного маха вперед. Этому действию способствуют мышцы задней поверхности бедра, которые, напрягаясь в этот момент, стабилизируют угол в коленном суставе.

В стартовом разгоне главную роль играют силовые характеристики отталкивания, однако значение быстрого и эффективного маха голени также велико. Время на­хождения на опоре (в первых шагах со старта) примерно в 1,5—1,8 раза больше, чем в максимально быстром беге, что позволяет производить маховые движения менее согнутой ногой, сообщая всему телу большее ускорение. Таким образом, двигательные установки при стартовых действиях должны быть направлены не только на выпол­нение мощного отталкивания, но и на эффективность маховых движений, которые должны выполняться макси­мально быстро и так, чтобы стопа маховой ноги не под­нималась высоко над поверхностью дорожки.

Несмотря на то что в сложной системе максимально быстрых движений спринтера еще много неясного, а строгие закономерности недостаточно достоверны ста­тистически, уже сейчас результаты исследований позво­ляют с большей эффективностью совершенствовать си­стему подготовки спортсменов.

Более тридцати лет назад Ф. Генри и Д. Трафтон, исследуя спринтерский бег, пришли к интересному выво­ду, что у спортсменов способность к быстрому разгону в начале дистанции и значение максимальной скорости бега мало зависят друг от друга, и предположили, что лимитирующие факторы у них, по-видимому, различны. Благодаря результатам исследования деятельности раз­личных мышечных групп в беге на короткие дистанции можно достаточно убедительно говорить о том, что способность быстро набирать скорость зависит в основном от скоростно-силовых характеристик мышц-разгибателей бедра, в то время как максимальная скорость бега предъ­являет очень высокие требования к скоростно-силовым возможностям мышц голени, оптимальному соотношению силы мышц-антагонистов и высокоорганизованной струк­туре движения.

 2.Травмы бегунов


Известные американские специалисты Джон Пальяно и Дуг Джексон провели большое клиническое исследование для того, чтобы определить природу различных беговых травм и причины, их вызывающие. В течение 10 лет они обследовали 3273 травмированных бегунов различной подготовленности - от джоггеров до олимпийских чемпионов, проанализировали более 40 характеристик травмированных спортсменов (возраст, пол, массу тела, структуру ног, условия получения травм, обувь, тренировочные методы и т. д.), ввели затем всю эту информацию в компьютер и определили наиболее общие причины, характеристики и симптомы травм.
Оказалось, что существуют травмы "женские" и "мужские". Так у мужчин чаще всего встречаются: воспаление подошвенного апоневроза, тен-диниты ахиллова сухожилия, функциональная недостаточность коленного сустава, у женщин - воспаление надкостницы, "колено бегуна". Бегуны старше 40 лет больше предрасположены к травмам спины и стопы.

Вот еще некоторые выявленные тенденции: чаще получали травмы бегуны с малым объемом бега (менее 20 миль (32 км) в неделю) - 46 %; большинство травмированных (66 %) применяли только длительный медленный бег, остальные 34 % включали некоторые формы скоростной работы; почти каждый (90 %) спортсмен применял регулярно упражнения на растягивания до и после бега; начинающие (14.%) травмировались не так часто как те, у кого стаж бега был более б лет (38 %); мужчины травмировались в два раза чаще женщин.
Среди всех травм авторы выделили 10 наиболее часто встречающихся и 5 причин их возникновения. 1. Слишком большой объем, интенсивность тренировки, быстрое повышение нагрузки. 2. Бег по слишком твердой, холмистой или неровной поверхности. 3. Слабые, негибкие мышцы. Бег в несоответствующей обуви, 5. Дефекты в строении стопы.
Итак, 10 наиболее часто встречающихся травм у бегунов.



2020-02-04 225 Обсуждений (0)
РАБОТА МЫШЦ В БЕГЕ ПО ДИСТАНЦИИ 0.00 из 5.00 0 оценок









Обсуждение в статье: РАБОТА МЫШЦ В БЕГЕ ПО ДИСТАНЦИИ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (225)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.026 сек.)