Мегаобучалка Главная | О нас | Обратная связь


Релейная защита и автоматика



2020-03-19 217 Обсуждений (0)
Релейная защита и автоматика 0.00 из 5.00 0 оценок




 

Релейная защита трансформатора ГПП.

В процессе эксплуатации системы электроснабжения возникают повреждения отдельных ее элементов. Наиболее опасными и частыми видами повреждений являются КЗ между фазами электрооборудования и однофазные КЗ на землю в сетях с большими токами замыкания на землю. В электрических машинах и трансформаторах наряду с междуфазными КЗ и замыканиями на землю имеют место витковые замыкания. Вследствие возникновения КЗ нарушается нормальная работа системы электроснабжения, что создает ущерб для промышленного предприятия.

При протекании тока КЗ элементы системы электроснабжения подвергаются термическому и динамическому воздействию. Для уменьшения размеров повреждения и предотвращения развития аварии устанавливают совокупность автоматических устройств, называемых релейной защитой и обеспечивающих с заданной степенью быстродействия отключение поврежденного элемента или сети.

Основные требования, предъявляемые к релейной защите, следующие: надежное отключение всех видов повреждений, чувствительность защиты, избирательность (селективность) действия - отключение только поврежденных участков, простота схем, быстродействие, наличие сигнализации о повреждениях.

Устройства релейной защиты для силовых трансформаторов предусматривают от следующих видов повреждений и ненормальных режимов работы: многофазных замыканий в обмотках и на выводах, присоединенных к сети с глухозаземленной нейтралью; витковых замыканий в обмотках; токов в обмотках, обусловленных перегрузкой; понижения уровня масла.

1) Дифференциальная защита

Данная защита выполняется на реле РНТ-565 и защищает трансформатор от однофазных КЗ в обмотке и ошиновке трансформатора в зоне ограничения трансформаторами тока. При повреждении в трансформаторе дифференциальная защита дает импульс на отключение выключателей 10 кВ, 110 кВ ввода трансформатора.

2) Максимальная токовая защита (МТЗ)

Эта защита применяется в качестве защиты от внешних коротких замыканий и является резервной по отношению к дифференциальной защите. МТЗ выполняется на переменном оперативном токе в двухфазном исполнении на базе реле РТ-40. Защита выполнена в виде трех комплектов МТЗ с комбинированным пуском по напряжению.

3) Газовая защита

Газовая защита является чувствительной реагирующей на повреждение внутри трансформатора, особенно при витковых замыканиях в обмотках, на которые газовая защита реагирует при замыкании большого числа витков.

Газовая защита также реагирует на повреждения изоляции стянутых болтов и возникновение местных очагов нагрева стали сердечника. Газовая защита срабатывает при достижении скорости движения масла от бака к расширителю от 0,6-0,8 л/с. Защита реагирует на появление газа в кожухе трансформатора и снижение уровня масла. Защита выполняется на базе реле РТЗ-261, которое поставляется с трансформатором. При всех видах повреждений газы, образовавшиеся в результате разложения масла и изоляции проводов, направляются через реле, установленное на трубопроводе, соединяющем бак трансформатора с расширителем и вытесняют масло из камеры реле в расширитель. В результате этого уровень масла в газовом реле понижается, установленные в реле поплавки опускаются, а прикрепленные к ним колбочки с ртутными контактами поворачиваются. При этом действует предупреждающий сигнал.

При бурном газообразовании, сопровождающемся течением струи масла под давлением, поворачиваются поплавок и колбочка с контактами. Последние, замыкаясь, действует на отключение выключателя 10 кВ трансформатора, а отключение выключателя 110 кВ короткозамыкателя.

4) Защита от перегрузок

На трансформаторах номинальной мощностью 400 кВА и более, подверженных перегрузкам, предусматривается максимальная токовая защита от токов перегрузки с действием на сигнал с выдержкой времени.

Защита выполняется на базе реле РТ-40 (КА5, КА6) с действием на сигнал, реле включается в цепь трансформатора тока со стороны низшего напряжения.

Исходные данные:

Трансформатор ТДН-10 МВА; 11516%1,5 кВ; ток трехфазного короткого замыкания Iкз=4,67 кА.

Расчет дифференциальной токовой защиты для трансформаторов ГПП.

а) Определение первичных номинальных токов на сторонах силового трансформатора (Iном1 и Iном2):

 

, А, (1.94)

 

 А,

 А

и коэффициенты трансформации трансформаторов тока:

 

, А, (1.95)

 А,

, А(1.96)

 А

 

Принимаем стандартные коэффициенты трансформации:

nТ1=100/5=20, ТВТ-110 (опорные в фарфоровой покрышке);

nТ2=600/5=120, ТЛМ-10 (с литой изоляцией).

б) Определим вторичные номинальные токи в плечах дифференциальной защиты:

 

, А, (1.97),

 А,

 А

 

Так как основная сторона дифференциальной защиты принимается по большему значению (iн1 и iн2), то в данном случае iн2> iн1.

Сторону напряжением 10 кВ принимаем за основную и все расчеты приводим к основной стороне.

в) Выбирается ток срабатывания защиты из условия отстройки:

1) от броска намагничивания

 

Iсз = Котс × Iнт2, А, (1.98)

 

где Котс=1,3-1,4 - коэффициент отсечки для РТН-565

 

Iсз = 1,3×550,5=716 А;

 

2) от максимального тока небаланса

 

Iсз = Котс×Iнб= Котс× ( ), А, (1.99)

 

где Котс=1,3 - коэффициент отсечки для РНТ-565.

Составляющая тока небаланса, обусловленная погрешностью (ток намагничивания) трансформаторов тока, питающих дифференциальную защиту определяется по формуле:

 

= Ка·Кодн· e ·Iкмакс, А, (1.100)

= 1×1×0,1×4,67=467 А

 

где Кодн - коэффициент, учитывающий однотипность трансформаторов тока (Кодн=1);

e - коэффициент, учитывающий 10% погрешность трансформаторов тока (e=0,1);

Ка - коэффициент, учитывающий переходной режим (апериодическая составляющая), (Ка=1 для реле с БНТ);

Iкмакс - максимальное значение тока КЗ за трансформатором, приведенная к основной стороне трансформатора.

Составляющая тока небаланса, обусловленная регулированием напряжения защищаемого трансформатора:

 

 А, (1.101)

 

где ±DN = ±16 - полный диапазон регулирования напряжения.

 

 А

 

Составляющая тока небаланса, обусловленная неточностью установки на коммутаторе реле РНТ расчетного целого числа витков обмоток:

 

,(1.102)

 

где W1расч., W1 - соответственное расчетное и установленное число витков обмоток реле РНТ для не основной стороны.

На первом этапе установки дифференциальной защиты I // /нб не учитывается, т.е.

 

Iсз = Котс × Iнб = Котс· ( ), А, Iсз = 1,3× (467+747,2) =1578,5 А.

 

За расчетную величину тока срабатывания защиты принимаем большее значение между: Iсз (от намагничивания) = 747,2 А, Iсз (от небаланса) = 1578,5 А.

г) Производится предварительная проверка чувствительности защиты при повреждениях в зоне ее действия.

 

Кч= >2, (1.103)

 

где Iкмин - минимальное значение тока КЗ (обычно двухфазное в зоне защиты)

 

Кч= = =2,57>2(1.104)

Iк. мин=0,87×Iкз, А,

Iк. мин=0,87×4670=4063 А.

Так как коэффициент чувствительности больше двух, то расчет можно продолжать.

д) Определяется ток срабатывания реле, отнесенный к стороне с большим током в плече (основной стороне)

 

Iср= , А, (1.105)

 

где nТ, Kсх - берется для основной стороны.

 

Iср= = 13,15 А(1.106)

 

е) Определяется расчетное число витков обмотки реле основной стороны Wосн. расч. = , витков, Wосн. расч. = = 7,6 витка.

Полученное число витков обмотки округляем до ближайшего меньшего числа витков, которое можно установить на реле РНТ-565, т.е. Wосн. расч= 7 витков.

ж) Определяется число витков обмотки неосновной стороны

 

W неосн. расч= × Wосн. расч, витков, (1.107)

 

где iн1 - вторичный номинальный ток основной стороны;

iн2 - вторичный номинальный ток другого плеча защиты.

 

W неосн. расч= =6,6 витков.


3) Определяется ток небаланса с учетом I .

 

I = × , А,

I = ×4670=424,5 А

 

е) Повторно определяется первичный ток срабатывания защиты и вторичный ток срабатывания реле:

 

Iсз=1,3 × (467+747,2+424,5) =2130,3 А

Iср= ×Ксх, А,

Iср= ×1= 17,7 А.

 

Полученные значения удовлетворяют требованиям, предъявляемые к дифференциальной защите.

Дифференциальная защита трансформаторов выполняется на реле РНТ-565, имеющий быстронасыщающийся трансформатор и уравнительные обмотки с регулирующими резисторами, с помощью которых можно отстраивать действия защиты. Таким образом, обеспечивается повышенная чувствительность защиты.

Расчет максимальной токовой защиты.

Расчет максимальной токовой защиты для трансформатора ГПП МТЗ устанавливается с высшей стороны трансформатора и действует с выдержкой времени при КЗ.

Ток срабатывания МТЗ выбирается исходя из условия отстройки (несрабатывания) от перегрузки. Ток перегрузки обычно определяется из рассмотрения 2-х режимов:

1. отключение параллельно работающего трансформатора

 

Iнагр. макс=0,8×Iном. тр, (1.108)

Iнагр. макс=0,8×50,3=40,2 А. (1.109)

 

2. автоматическое подключение нагрузки при действии АВР

 

Iнагр. макс= I1+ I2=0,8· (Iном. тр1+ Iном. тр2),

Iнагр. макс=0,8× (100,6+100,6) =161 А.

 

Ток срабатывания защиты выбирается по формуле:

Iсз= × Iраб. макс, А, (1.110)

 

где Котс= 1,1-1,2 для реле РТ-40;

Квоз=0,85 - коэффициент возврата реле;

Кзап=2,5 - коэффициент самозапуска обобщенной нагрузки;

Iсз= × 161=520,9 А.

 

Коэффициент чувствительности при двухфазном КЗ:

К >1,5,

 

где Iк. мин - минимальный ток двухфазного КЗ до трансформатора ГПП.

К =6,6>1,5(1.111)

 

Выдержка времени выбирается из условия селективности на ступень выше наибольшей выдержки времени tп защит присоединений, питающихся от трансформатора

 

tт=tп+ D t, с,

 

где tп=0,8 с - выдержка времени защиты, установленной на присоединениях питающихся от данного трансформатора,

Dt=0,5 с - ступень выдержки времени.

 

tт=0,8+0,5=1,3 с.

 

Расчет защиты от перегрузки.

Защиту от перегрузки осуществляют одним реле РТ-80 с ограниченно зависимой характеристикой. Защита действует на сигнал с выдержкой времени. Ток срабатывания выбирают из условия возврата реле при номинальном токе трансформатора:

 

Iсз= × Iном. тр, А, (1.112)

Iсз= × 50,3= 66 А.(1.113)

 

Время действия защиты от перегрузки выбирается на ступень больше МТЗ:

 

tпер=tмтз+Dt, с

tпер=1,3+0,5=1,8 с.

 

Автоматика и сигнализация.

На подстанциях предусматривается следующая автоматика:

1) Автоматическое включение резерва (АВР). АВР питания или оборудования предусматривают во всех случаях, когда электроснабжение вызывает убытки, значительно превышающие стоимость установки устройства АВР. В случае повреждения одного из трансформаторов, происходит его отключение и автоматическое включение секционного выключателя, чем обеспечивается бесперебойное электроснабжение потребителей.

2) Автоматическое повторное включение (АВР) трансформаторов предусматривается для автоматического восстановления их нормальной работы после аварийных отключений, не связанных с внутренними повреждениями трансформатора. АПВ трансформаторов является обязательным на однотрансформаторных подстанциях с односторонним питанием. На двухтрансформаторных подстанциях с односторонним питанием АПВ целесообразно устанавливать в том случае, если отключение одного трансформатора вызывает перегрузку другого и в связи с этим часть потребителей должна отключиться. АПВ позволяет без вмешательства обслуживающего персонала восстановить питание линии после кратковременных КЗ.



2020-03-19 217 Обсуждений (0)
Релейная защита и автоматика 0.00 из 5.00 0 оценок









Обсуждение в статье: Релейная защита и автоматика

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (217)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)