Мегаобучалка Главная | О нас | Обратная связь


Тенденции развития микропроцессоров семейств INTEL-AMD.



2020-03-19 198 Обсуждений (0)
Тенденции развития микропроцессоров семейств INTEL-AMD. 0.00 из 5.00 0 оценок




Зачем изучать историю? – Это неинтересно! Зачем знать, в каком году был выпущен тот или иной микропроцессор? Скажете Вы. И будете не правы. Ибо, только изучая историю можно понять и предугадать будущее. Обратите внимание- процессор с 16-ти разрядной шиной данных i8086 появляется на год раньше процессора с 8-ми разрядной шиной данных i8088. Случайность – скажете Вы. А появление 32-х разрядного i80386DX на год раньше 16-ти разрядного i80386SX? А появление 486 SX позже 486DX? Просто на момент появления i8086 не существовало 16-ти разрядных приложений. Другими словами у появившегося процессора попросту не было потребителя на тот момент. Точно также большинству задач для 486 процессора не требовался сопроцессор. Таким образом, налицо тенденция развития рынка микропроцессоров – сначала появляется новый процессор, а затем более дешевый упрощенный его вариант, совместимый с существующими программными продуктами и аппаратным обеспечением. Вторая тенденция- это «поддержка программного и аппаратного обеспечения сверху вниз». Это означает, что любой новый процессор, например PENTIUM IV или DURON должен поддерживать весь набор инструкций более ранних процессоров, например i8088. Это связано со стремлением разработчиков «привязать» потребителя к конкретной платформе. И пусть этот набор инструкций морально устарел, зато потребителю не приходится переходить на другое программное обеспечение. Обратная сторона этой медали - невозможность кардинальных перемен, ведущих к значительному улучшению архитектуры процессоров.

Вообще, производительность процессора можно повысить тремя способами: увеличивая разрядность, повышая тактовую частоту, совершенствуя архитектуру. Разрядность микропроцессоров (РС совместимых) в настоящее время достигла стабильных величин – шины адреса 32 (4 Гб адресного пространства), шины данных 64. Действительно, пока сложно представить себе компьютер с более чем 4 Гб оперативной памяти. Работы в области увеличения тактовых частот процессоров ведутся очень активно, но это экстенсивный путь развития: повышение частоты в 2 раза при прочих равных увеличивает производительность на 70%, и имеет физический и технологический пределы. Например, на сегодняшний (или уже вчерашний) день это 1,5 –2 ГГц. Следовательно, основной путь развития – оптимизация структуры процессора, и за счет этого, увеличение производительности. Тенденций здесь несколько:

а.  увеличение количества потоков, по которым могут производиться конвейерные вычисления,

в.  увеличение внутренней кэш памяти и деление ее на несколько уровней, что позволяет держать в «быстрой» памяти основные и наиболее часто используемые данные,

с.  и, наконец, разбиение «больших» команд на несколько более мелких и удобных для процессора.

Кроме того, есть ряд характерных тенденций в технологии производства микропроцессоров. Это:

· Увеличение производительности требует дальнейшего снижения теплоотдачи процессора, а достигнуть этого можно в основном за счет снижения напряжения питания (с 5 В в 1991 году до 1,5 В в 2002).

· Дальнейшее увеличение производительности возможно только за счет увеличения количества транзисторов на кристалле, а это требует совершенствования технологии производства и уменьшение расстояния между транзисторами на кристалле (с 0,6 микрон у Pentium I до 0,1 микрон у Pentium IV).

· Совершенствование системы охлаждения микропроцессоров.

Таким образом, можно уже сейчас предположить каким будет процессор через 2-3 года:

· Технология изготовления 0,1- 0,05 микрон,

· Тактовая частота 3-5 ГГц,

· Внутренний кэш 4-го уровня,

· Внешняя шина 200-500 МГц,

· Шина данных 128 (256?) разрядов,

· Набор инструкций RISC процессора, впрочем, эмулирующий все предыдущие версии.

При этом ошибочно было бы предполагать, что нельзя предугадать примерную цену на новый процессор. Дело в том, что цены на все высокотехнологичное оборудование меняются очень быстро. Связано это как с инфляцией, так и с необходимостью продвижения на рынке новых изделий. Таким образом, при себестоимости 5-10 долларов, продажная цена процессора может достигать величин 500-2000 долларов.

 

 


Рисунок 3 зависимость цены микропроцессора от его производительности.

График зависимости цены микропроцессора в зависимости от его производительности представлен на рис.3. На этом графике специально нет координатной сетки, поскольку цена меняется практически каждую неделю, и следовательно, каждый может построить такой график сам для конкретного момента времени, используя любой индекс оценки производительности процессора (например iCOMP). Данную кривую можно аппроксимировать тремя прямыми, первая из которых, почти параллельная оси абсцисс, характеризует процессоры, выпускавшиеся 2-5 лет назад, и уже снятые с производства. Цена на них почти равна себестоимости. Третья, почти параллельная оси ординат, характеризует процессоры, выпускаемые в последнее время, а также только что выпущенные. Цена на них резко завышена. И, наконец, вторая прямая характеризует процессоры, производящиеся более года, но не более двух. Именно эти процессоры и являются оптимальными по соотношению цена/качество.

Следует заметить, что штрих - пунктирной линией на этом же графике можно отметить то, что будет через какой-либо промежуток времени, например пол года. Те процессоры, которые стоили «бешеных» денег потеряют в цене, зато появятся новые, которые будут стоить столько же, сколько и их предшественники пол года назад. Таким образом, во все времена, современный производительный процессор стоил и будет стоить от 70 до 200 долларов, поскольку цена его связана не с себестоимостью производства (напомню, 5-10 долларов), а с реальным спросом населения.

 

Память

Выражаясь языком нашего недавнего классического наследия, процессор, память и устройства ввода-вывода — это "три источника и три составные части" компьютера. Практически все компьютеры используют три вида памяти: оперативную, постоянную и внешнюю.

Оперативная память предназначена для хранения переменной информации, так как допускает изменение своего содержимого в ходе выполнения микропроцессором вычислительных операций. Таким образом, этот вид памяти обеспечивает режимы записи, считывания и хранения информации. Поскольку в любой момент времени доступ может осуществляться к произвольно выбранной ячейке, то этот вид памяти называют также памятью с произвольной выборкой — RAM (Random Access Memory). Для построения запоминающих устройств типа RAM используют микросхемы статической и динамической памяти.

Постоянная память, где хранится такая информация, которая не должна меняться в ходе выполнения микропроцессором программы, имеет собственное название — ROM (Read Only Memory), которое указывает на то, что обеспечиваются только режимы считывания и хранения. Постоянная память обладает тем преимуществом, что может сохранять информацию и при отключенном питании. Это свойство получило название энергонезависимости. Все микросхемы постоянной памяти по способу занесения в них информации (программированию) делятся на масочные (ROM), программируемые изготовителем, однократно программируемые пользователем (Programmable ROM) и многократно программируемые пользователем (Erasable PROM). Последние в свою очередь подразделяются на стираемые электрически и с помощью ультрафиолетового облучения. К элементам EPROM с электрическим стиранием информации относятся и микросхемы флэш-памяти (flash). От обычных EPROM они отличаются высокой скоростью доступа и быстрым стиранием записанной информации.

Внешняя память реализована обычно на магнитных или оптических носителях.



2020-03-19 198 Обсуждений (0)
Тенденции развития микропроцессоров семейств INTEL-AMD. 0.00 из 5.00 0 оценок









Обсуждение в статье: Тенденции развития микропроцессоров семейств INTEL-AMD.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (198)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)