Мегаобучалка Главная | О нас | Обратная связь


Набор микросхем, или chipset



2020-03-19 210 Обсуждений (0)
Набор микросхем, или chipset 0.00 из 5.00 0 оценок




В современных компьютерах, конечно, давно не используются, например, отдельные чипы контроллеров, однако все их функции реализованы в микросхемах системных и периферийных контроллеров (это уже сверхбольшие интегральные схемы), которые, тем не менее, обеспечивают со своими предшественниками полную программную совместимость. Да и вообще, системная плата современного компьютера отличается от аналогичной платы более ранней модели в первую очередь тем, что большое количество микросхем средней степени интеграции (MSI, Medium-Scale Integration), на которых были выполнены основные функциональные узлы компьютера, теперь заменены на несколько (одну—четыре) сверхбольших интегральных схем (VLSI, Very Large-Scale Integration). Такие VLSI, реализующие функции прежних микросхем MSI, называются набором микросхем, или chipset (чипсет). Преимущество применения таких наборов очевидно. Во-первых, они занимают меньше места, во-вторых, потребляют меньший ток и, в-третьих, гораздо надежнее (ведь в общем случае надежность устройства обратно пропорциональна количеству входящих в него микросхем).

Наиболее известные наборы микросхем выпускают сегодня такие компании, как Intel, AMD, UMC, SiS, хотя ими, конечно, дело не ограничивается.

В большинство наборов тем или иным образом входит периферийный контроллер, например микросхема 82С206 или ей подобная. Обычно такая микросхема функционально содержит два контроллера прерываний типа 8259, два контроллера прямого доступа к памяти типа 8237, таймер типа 8254, часы реального времени и более 100 байт CMOS RAM для хранения системной конфигурации.

Поскольку основной задачей чипсета является обеспечение бесперебойной и быстрой работы процессора с периферийными устройствами, вся его структура посвящена выполнению именно этой задачи.

Системные и локальные шины

Основным функционалом системной шины является передача информации и данных между базовым микропроцессором и остальными электронными компонентами компьютера. По этой шине осуществляется также адресация устройств и происходит обмен специальными служебными сигналами. Таким образом, упрощенно системную шину можно представить как совокупность сигнальных линий, объединенных по их назначению (данные, адреса, управление). Передачей информации по шине управляет одно из подключенных к ней устройств или специально выделенный для этого узел, называемый арбитром шины.

 

Системная шина IBM PC и IBM PC/XT была предназначена для одновременной передачи только 8 бит информации, так как используемый в компьютерах микропроцессор 18088 имел 8 линий данных. Кроме того, системная шина включала 20 адресных линий, которые ограничивали адресное пространство пределом в 1 Мбайт. Для работы с внешними устройствами в этой шине были предусмотрены также 4 линии аппаратных прерываний (IRQ) и 4 линии для требования внешними устройствами прямого доступа в память (DMA, Direct Memory Access). Для подключения плат расширения использовались специальные 62-контактные разъемы. Системная шина и микропроцессор синхронизировались от одного тактового генератора с частотой 4,77 МГц. Таким образом, теоретически скорость передачи данных могла достигать более 4,5 Мбайта/с.

Шина ISA

Появление PC/AT, использующего микропроцессор i80286 с 16 разрядной шиной данных, потребовало разработки новой системной шины ISA (Industry Standard Architecture), полностью реализующей возможности упомянутого микропроцессора. Она отличалась наличием дополнительного 36-контактного разъема для соответствующих плат расширения. За счет этого количество адресных линий было увеличено на четыре, а данных — на восемь. Теперь можно было передавать параллельно уже 16 разрядов данных, а благодаря 24 адресным линиям напрямую обращаться к 16 Мбайтам системной памяти. Количество линий аппаратных прерываний в этой шине было увеличено с 7 до 15, а каналов DMA — с 4 до 7. Надо отметить, что новая системная шина ISA полностью включала в себя возможности старой 8-разрядной шины, то есть все устройства, используемые в PC/XT, могли без проблем применяться и в PC/AT 286. Системные платы с шиной ISA уже допускали возможность синхронизации работы самой шины и микропроцессора разными тактовыми частотами, что позволяло устройствам, выполненным на платах расширения, работать медленнее, чем базовый микропроцессор. Это стало особенно актуальным, когда тактовая частота процессоров превысила 10—12 МГц. Теперь системная шина ISA стала работать асинхронно с процессором на частоте 8 МГц. Таким образом, скорость передачи могла достигать 16 Мбайт/с.

Шина EISA

С появлением новых микропроцессоров, таких, как i80386 и i486, стало очевидно, что одним из вполне преодолимых препятствий на пути повышения производительности компьютеров с этими микропроцессорами является системная шина ISA. Дело в том, что возможности этой шины для построения высокопроизводительных систем следующего поколения были практически исчерпаны. Новая системная шина должна была обеспечить больший возможный объем адресуемой памяти, 32-разрядную передачу данных, в том числе и в режиме DMA, улучшенную систему прерываний и арбитраж DMA, автоматическую конфигурацию системы и плат расширения. Такой шиной для IBM PC-совместимых компьютеров стала EISA (Extended Industry Standard Architecture). В EISA-разъем на системной плате компьютера помимо, разумеется, специальных EISA-плат могла вставляться либо 8-, либо 16-разрядная плата расширения, предназначенная для обыкновенной PC/AT с шиной ISA. Это обеспечивалось простым, но поистине гениальным конструктивным решением. EISA-разъемы имеют два ряда контактов, один из которых (верхний) использует сигналы шины ISA, а второй (нижний) — соответственно EISA. Контакты в соединителях EISA расположены так, что рядом с каждым сигнальным контактом находится контакт "Земля". Благодаря этому сводится к минимуму вероятность генерации электромагнитных помех, а также уменьшается восприимчивость к таким помехам.

Шина EISA позволяла адресовать 4-Гбайтное адресное пространство, доступное микропроцессорам 180386/486. Стандарт EISA поддерживал многопроцессорную архитектуру для "интеллектуальных" устройств (плат), оснащенных собственными микропроцессорами. Поэтому данные, например, от контроллеров жестких дисков, графических контроллеров и контроллеров сети могли обрабатываться независимо, не загружая при этом основной процессор. Теоретически максимальная скорость передачи по шине EISA в так называемом пакетном режиме (burst mode) могла достигать 33 Мбайт/с. В обычном (стандартном) режиме она не превосходила, разумеется, известных значений для ISA.

На шине EISA предусматривался метод централизованного управления, организованный через специальное устройство — системный арбитр. Таким образом поддерживается использование ведущих устройств на шине, однако возможно также предоставление шины запрашивающим устройствам по циклическому принципу.

Рис. 5

Модуль переключателей

Для компьютеров с шиной EISA было предусмотрено автоматическое конфигурирование системы. Каждый изготовитель плат расширения для компьютеров с шиной EISA поставлял вместе с этими платами и специальные файлы конфигурации. Информация из этих файлов использовалась на этапе подготовки системы к работе, которая заключается в разделении ресурсов компьютера между отдельными платами. Для "старых" плат адаптеров пользователь должен сам подобрать правильное положение DIP-переключателей (рис.5) и перемычек, однако сервисная программа на EISA-компьютерах позволяла отображать установленные положения соответствующих переключателей на экране монитора и дает некоторые рекомендации по правильной их установке. Помимо этого в архитектуре EISA предусматривалось выделение определенных групп адресов ввода-вывода для конкретных слотов шины — каждому разъему расширения отводится адресный диапазон 4 Кбайта, что также позволяло избежать конфликтов между отдельными платами EISA.

Компьютеры, использовавшие системные платы с шиной EISA, были достаточно дороги. К тому же шина по-прежнему тактировалась частотой около 8—10 МГц, а скорость передачи увеличивалась в основном благодаря увеличению разрядности шины данных.

Локальные шины

Разработчики компьютеров, системные платы которых основывались на микропроцессорах i80386/486, стали использовать раздельные шины для памяти и устройств ввода-вывода, что позволило максимально задействовать возможности оперативной памяти, так как именно в данном случае память может работать с наивысшей для нее скоростью. Тем не менее, при таком подходе вся система не может обеспечить достаточной производительности, так как устройства, подключенные через разъемы расширения, не могут достичь скорости обмена, сравнимой с процессором. В основном это касается работы с контроллерами накопителей и видеоадаптерами. Для решения возникшей проблемы стали использовать так называемые локальные (local) шины, которые непосредственно связывают процессор с контроллерами периферийных устройств.

Шины VL-bus и PCI

Практически одновременно, появились две локальные шины, признанные промышленными: VL-bus (или VLB), предложенная ассоциацией VESA (Video Electronics Standards Association), и PCI (Peripheral Component Interconnect), разработанная фирмой Intel. Обе эти шины были предназначены, вообще говоря, для одного и того же - для увеличения быстродействия компьютера, позволяя таким периферийным устройствам, как видеоадаптеры и контроллеры накопителей, работать с тактовой частотой до 33 МГц и выше. Обе шины использовали разъемы типа МСА. На этом, впрочем, их сходство и заканчивалось, поскольку требуемая цель достигалась разными средствами.

Если VL-bus являлась, по сути, расширением шины процессора (вспомним шину IBM PC/XT), то PCI по своей организации более тяготеет к системным шинам, например к EISA, и представляет собой абсолютно новую разработку. Строго говоря, PCI относится к классу так называемых mezzanine-шин, то есть шин-"пристроек", поскольку между локальной шиной процессора и самой PCI находится специальная микросхема согласующего "моста" (bridge).

Так как VL-bus продолжает шину процессора без промежуточных буферов, ее схемная реализация оказывается более дешевой и простой. Первая спецификация VESA, в частности, предусматривала, что к шине, которая являлась локальной 32-разрядной шиной системного микропроцессора, могло подключаться до трех периферийных устройств. Некоторые изготовители, впрочем, были убеждены, что добиться устойчивой работы трех устройств на высоких частотах вообще невозможно, и устанавливали на свои платы только 2 слота. Ограничение на число устройств было связано с тем, что электрическая нагрузочная способность на сигнальные линии любого процессора весьма невелика, и по сути своей, любое новое подключаемое устройство являлось шунтом для предыдущих.

В качестве устройств, подключаемых к VL-bus, выступали контроллеры накопителей, видеоадаптеры и сетевые платы. Конструктивно VL-bus выглядит как короткий соединитель типа МСА (112 контактов), установленный, например, рядом с разъемами расширения ISA или EISA. При этом 32 линии используются для передачи данных и 30 — для передачи адреса. Максимальная; скорость передачи по шине VL-bus теоретически может составлять около 130 Мбайт/с. Стоит отметить, что на VL-bus не был предусмотрен арбитр шины. К счастью, большинство подключаемых к ней устройств являлись "пассивными", то есть сами не инициировали передачу данных. Тем не менее во избежание возможных конфликтов между подключенными к шине устройствами в спецификации выделялись "управляющие" (master) и "управляемые" (slave) адаптеры. Для "управляющих" устройств на системных платах обычно были определены свои "мастер" слоты. По замыслу разработчиков, подобные "управляющие" устройства могли осуществлять арбитраж на шине.

После появления процессора Pentium ассоциация VESA приступила к работе над новым стандартом VL-bus (версия 2). Он предусматривал, в частности, использование 64-разрядной шины данных и увеличение количества разъемов расширения (предположительно три разъема на 40 МГц и два на 50 МГц). Ожидаемая скорость передачи теоретически должна была возрасти до 400 Мбайт/с.

Спецификация шины PCI обладает несколькими преимуществами перед основной версией VL-bus. Так, использовать PCI можно вне зависимости от типа процессора. Специальный контроллер заботится о разделении управляющих сигналов локальной шины процессора и PCI-шины и, кроме того, осуществляет арбитраж на PCI. Именно поэтому данная шина может использоваться и в иных компьютерных платформах. Следует отметить, что гибкость и быстродействие этой шины предполагают и большие аппаратные затраты, чем для VL-bus. Тем не менее, шина PCI стала практическим стандартом для систем на базе Pentium и не менее успешно используется в других компьютерах, даже и не РС совместимых.

В соответствии со спецификацией PCI к шине могут подключаться до 10 устройств. Это, однако, не означает использования такого же числа разъемов расширения — ограничение относится к общему числу компонентов, в том числе расположенных на системной плате. Поскольку каждая плата расширения PCI может разделяться между двумя периферийными устройствами, то уменьшается общее число устанавливаемых разъемов. В отличие от VL-bus шина PCI работает на фиксированной тактовой частоте 33 МГц и предусматривает напряжение питания для контроллеров как 5, так и 3,3 В, а также обеспечивает режим их автоконфигурации (plug and play — "включай и работай"). Заметим, что, например, PCI-карты, рассчитанные на напряжение 5 В, могут вставляться только в соответствующие слоты, которые конструктивно отличаются от слотов для напряжения 3,3 В. Впрочем, имеются и так называемые универсальные PCI-адаптеры, которые работают в любом из слотов. Шина PCI может использовать 124-контактный (32-разрядная) или 188-контактный разъем (64-разрядная передача данных), при этом теоретически возможная скорость обмена составляет соответственно 132 и 264 Мбайта/с.

Вообще говоря, многие изготовители системных плат часто предусматривали в своих изделиях разнообразные комбинации системных и локальных шин от ISA плюс VL-bus до EISA плюс AGP.

 Примерный вид такой платы приведен на рис 6. Тем не менее в "войне" локальных шин несомненную победу одержала PCI.

1.8.5 Шина PCI как ось "Север — Юг" в PC

Рис. 6

Слоты расширения

Шина PCI представляет собой мощное средство взаимодействия различных компонентов PC, как расположенных внутри системного блока, так и находящихся за его пределами. Intel воспользовалась этим преимуществом, чтобы разделить различные функции, возложенные на чипсет материнской платы, на две группы. Она интегрировала одну группу функций в микросхему, назвав ее Northbridge (Северный мост). Другая группа функций была интегрирована (фирмой Intel и некоторыми из ее конкурентов) в микросхему под названием Southbridge (Южный мост). Эти микросхемы соединяются шиной PCI. Данное соединение (и многое другое) показано на рис.

Тщательный анализ, этого рисунка поможет вам глубже понять архитектуру современных PC. На этом рисунке показано, что наш гипотетический, современный PC (который может: быть как настольным компьютером, так и

23.Микросхема Southbridge 24.IDE, FDD и другие порты 25.Микросхема Northbridge Интерфейс CPU-PCI 26.32 Кбита 33 МГц; 27.64 Кбита; 66 МГц


лэптопом) соединен со "стыковочной" станцией. Смысл такой организации в том, чтобы компьютер сохранял работоспособность при отключении от этой стыковочной станции, но при подключении к ней его возможности существенно возрастали бы. Приведем подробное описание каждого устройства, изображенного на этом рисунке, начав с описания микросхемы Northbridge и новейшего способа подключения видеоподсистемы к центральному процессору.

 

 

Рис. 7. Архитектура PC

Во всех современных PC соединение: центрального процессора с оперативной памятью осуществляется через более быструю и более широкую шину данных, чем это может быть обеспечено при использовании для этого соединения шины PCI. Эта быстрая шина называется внутренней (system) или главной (host) шиной. Центральный процессор не может непосредственно подключаться к модулям памяти. Для этого, по крайней мере, необходимо использование буферов и декодеров адресов памяти. Точно так же, он не может непосредственно подключаться к линиям шины PCI. (Все сигналы, необходимые для обеспечения взаимодействия со всеми остальными компонентами PC, присутствуют на контактах разъемов шины PCI, поэтому Intel решила подключать все эти компоненты к шине PCI, а не прямо к микросхеме Northbridge.

Электронные схемы интерфейса, необходимые для решения этих задач, иногда называемые частью связующей логики материнской платы (motherboard gluelogic), были интегрированы в один очень большой кристалл интегральной микросхемы (сложность которого сравнима со сложностью центрального процессора). Intel назвала, эту микросхему Northbridge. В процессе разработки этой микросхемы у разработчиков возникла идея реализовать на ней поддержку другой, очень быстродействующей шины данных специального назначения. Они назвали ее интерфейс передовым портом графики (Advanced Graphics Port, AGP).

Шина AGP представляет собой шину, способную работать с частотой внутренней шины материнской платы, имеющую то же количество линий для передачи данных (в настоящее время это означает параллельную передачу 32 бит данных с тактовой частотой 66 МГц) и осуществляющую соединение микросхемы Northbridge с графическим акселератором. Графический акселератор может быть установлен на материнской плате (как это показано на рис. 7) или реализован в виде съемной карты расширения, вставляемой в специальный разъем AGP.

В этом случае на графическом акселераторе установлен банк локальной памяти, к которому имеет доступ только сам акселератор, он является дополнением к буферу изображения, который все еще логически размещен в диапазоне адресов оперативной памяти. Кроме того, видеоадаптер может получить высокоскоростной доступ к оперативной памяти PC, используя для/этого шину AGP, микросхему Northbridge и шину оперативной памяти.



2020-03-19 210 Обсуждений (0)
Набор микросхем, или chipset 0.00 из 5.00 0 оценок









Обсуждение в статье: Набор микросхем, или chipset

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (210)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)